STG-MTL: Scalable Task Grouping for Multi-Task Learning Using Data Map
- URL: http://arxiv.org/abs/2307.03374v2
- Date: Sun, 26 May 2024 04:52:02 GMT
- Title: STG-MTL: Scalable Task Grouping for Multi-Task Learning Using Data Map
- Authors: Ammar Sherif, Abubakar Abid, Mustafa Elattar, Mohamed ElHelw,
- Abstract summary: Multi-Task Learning (MTL) is a powerful technique that has gained popularity due to its performance improvement over traditional Single-Task Learning (STL)
However, MTL is often challenging because there is an exponential number of possible task groupings.
We propose a new data-driven method that addresses these challenges and provides a scalable and modular solution for classification task grouping.
- Score: 4.263847576433289
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Multi-Task Learning (MTL) is a powerful technique that has gained popularity due to its performance improvement over traditional Single-Task Learning (STL). However, MTL is often challenging because there is an exponential number of possible task groupings, which can make it difficult to choose the best one because some groupings might produce performance degradation due to negative interference between tasks. That is why existing solutions are severely suffering from scalability issues, limiting any practical application. In our paper, we propose a new data-driven method that addresses these challenges and provides a scalable and modular solution for classification task grouping based on a re-proposed data-driven features, Data Maps, which capture the training dynamics for each classification task during the MTL training. Through a theoretical comparison with other techniques, we manage to show that our approach has the superior scalability. Our experiments show a better performance and verify the method's effectiveness, even on an unprecedented number of tasks (up to 100 tasks on CIFAR100). Being the first to work on such number of tasks, our comparisons on the resulting grouping shows similar grouping to the mentioned in the dataset, CIFAR100. Finally, we provide a modular implementation for easier integration and testing, with examples from multiple datasets and tasks.
Related papers
- Data-CUBE: Data Curriculum for Instruction-based Sentence Representation
Learning [85.66907881270785]
We propose a data curriculum method, namely Data-CUBE, that arranges the orders of all the multi-task data for training.
In the task level, we aim to find the optimal task order to minimize the total cross-task interference risk.
In the instance level, we measure the difficulty of all instances per task, then divide them into the easy-to-difficult mini-batches for training.
arXiv Detail & Related papers (2024-01-07T18:12:20Z) - Distribution Matching for Multi-Task Learning of Classification Tasks: a
Large-Scale Study on Faces & Beyond [62.406687088097605]
Multi-Task Learning (MTL) is a framework, where multiple related tasks are learned jointly and benefit from a shared representation space.
We show that MTL can be successful with classification tasks with little, or non-overlapping annotations.
We propose a novel approach, where knowledge exchange is enabled between the tasks via distribution matching.
arXiv Detail & Related papers (2024-01-02T14:18:11Z) - Multitask Learning Can Improve Worst-Group Outcomes [76.92646345152788]
Multitask learning (MTL) is one such widely used technique.
We propose to modify standard MTL by regularizing the joint multitask representation space.
We find that our regularized MTL approach emphconsistently outperforms JTT on both average and worst-group outcomes.
arXiv Detail & Related papers (2023-12-05T21:38:24Z) - When Multi-Task Learning Meets Partial Supervision: A Computer Vision Review [7.776434991976473]
Multi-Task Learning (MTL) aims to learn multiple tasks simultaneously while exploiting their mutual relationships.
This review focuses on how MTL could be utilised under different partial supervision settings to address these challenges.
arXiv Detail & Related papers (2023-07-25T20:08:41Z) - Task Aware Feature Extraction Framework for Sequential Dependence
Multi-Task Learning [1.0765359420035392]
We analyze sequential dependence MTL from rigorous mathematical perspective.
We propose a Task Aware Feature Extraction (TAFE) framework for sequential dependence MTL.
arXiv Detail & Related papers (2023-01-06T13:12:59Z) - Variational Multi-Task Learning with Gumbel-Softmax Priors [105.22406384964144]
Multi-task learning aims to explore task relatedness to improve individual tasks.
We propose variational multi-task learning (VMTL), a general probabilistic inference framework for learning multiple related tasks.
arXiv Detail & Related papers (2021-11-09T18:49:45Z) - Semi-supervised Multi-task Learning for Semantics and Depth [88.77716991603252]
Multi-Task Learning (MTL) aims to enhance the model generalization by sharing representations between related tasks for better performance.
We propose the Semi-supervised Multi-Task Learning (MTL) method to leverage the available supervisory signals from different datasets.
We present a domain-aware discriminator structure with various alignment formulations to mitigate the domain discrepancy issue among datasets.
arXiv Detail & Related papers (2021-10-14T07:43:39Z) - Task-Feature Collaborative Learning with Application to Personalized
Attribute Prediction [166.87111665908333]
We propose a novel multi-task learning method called Task-Feature Collaborative Learning (TFCL)
Specifically, we first propose a base model with a heterogeneous block-diagonal structure regularizer to leverage the collaborative grouping of features and tasks.
As a practical extension, we extend the base model by allowing overlapping features and differentiating the hard tasks.
arXiv Detail & Related papers (2020-04-29T02:32:04Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.