論文の概要: Towards Auto-Building of Embedded FPGA-based Soft Sensors for Wastewater Flow Estimation
- arxiv url: http://arxiv.org/abs/2407.05102v1
- Date: Sat, 6 Jul 2024 15:10:27 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-09 21:08:14.133953
- Title: Towards Auto-Building of Embedded FPGA-based Soft Sensors for Wastewater Flow Estimation
- Title(参考訳): 埋込みFPGAソフトセンサの自動構築に向けて
- Authors: Tianheng Ling, Chao Qian, Gregor Schiele,
- Abstract要約: リソース制限型IoTデバイス上でのDeep Learning (DL)ベースのソフトセンサによるフロー推定は,信頼性とエネルギー効率の面で有望であることを示す。
本研究は, プロトタイプIoTデバイスを用いた排水流量推定のためのエンド・ツー・エンドの自動解法を提案する。
- 参考スコア(独自算出の注目度): 19.835810073852244
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Executing flow estimation using Deep Learning (DL)-based soft sensors on resource-limited IoT devices has demonstrated promise in terms of reliability and energy efficiency. However, its application in the field of wastewater flow estimation remains underexplored due to: (1) a lack of available datasets, (2) inconvenient toolchains for on-device AI model development and deployment, and (3) hardware platforms designed for general DL purposes rather than being optimized for energy-efficient soft sensor applications. This study addresses these gaps by proposing an automated, end-to-end solution for wastewater flow estimation using a prototype IoT device.
- Abstract(参考訳): リソース制限型IoTデバイス上でのDeep Learning (DL)ベースのソフトセンサによるフロー推定は,信頼性とエネルギー効率の面で有望であることを示す。
しかし,(1)利用可能なデータセットの欠如,(2)デバイス上でのAIモデルの開発と展開のための不便なツールチェーン,(3)エネルギー効率のよいソフトセンサアプリケーションに最適化されるのではなく,一般のDLのために設計されたハードウェアプラットフォームなどにより,排水流量推定の分野への応用はいまだ検討されていない。
本研究は, プロトタイプIoTデバイスを用いた排水流量推定のための自動エンドツーエンドソリューションを提案することにより, これらのギャップに対処する。
関連論文リスト
- Towards an Autonomous Surface Vehicle Prototype for Artificial Intelligence Applications of Water Quality Monitoring [68.41400824104953]
本稿では,人工知能アルゴリズムの利用と水質モニタリングのための高感度センシング技術に対処する車両プロトタイプを提案する。
車両には水質パラメータと水深を測定するための高品質なセンサーが装備されている。
ステレオカメラにより、実際の環境でのマクロプラスチックの検出と検出も可能である。
論文 参考訳(メタデータ) (2024-10-08T10:35:32Z) - Optimizing Diffusion Models for Joint Trajectory Prediction and Controllable Generation [49.49868273653921]
拡散モデルは、自律運転における共同軌道予測と制御可能な生成を約束する。
最適ガウス拡散(OGD)と推定クリーンマニフォールド(ECM)誘導を導入する。
提案手法は生成過程の合理化を図り,計算オーバーヘッドを低減した実用的な応用を実現する。
論文 参考訳(メタデータ) (2024-08-01T17:59:59Z) - On-Device Soft Sensors: Real-Time Fluid Flow Estimation from Level Sensor Data [19.835810073852244]
この研究は、クラウド上にソフトセンサーを配置する代わりに、デバイス上でのソフトセンサーの採用にシフトし、効率の向上とデータセキュリティの強化を約束する。
本手法は,無線センサネットワーク内のデバイスに直接人工知能(AI)を配置することにより,エネルギー効率を大幅に向上させる。
論文 参考訳(メタデータ) (2023-11-25T14:18:29Z) - Orbital AI-based Autonomous Refuelling Solution [6.776059370975249]
本稿では、ドッキングおよび軌道上サーベイシング(OOS)の主センサとしてのオンボード可視光カメラの利用を成熟させるAIベースのナビゲーションアルゴリズムの開発について述べる。
複数の畳み込みニューラルネットワークバックボーンアーキテクチャは、国際宇宙ステーション(ISS)とのドッキング操作の合成データに基づいてベンチマークされる
再給油機構の物理プロトタイプと溶液の統合を、ロボットアームを用いて実験室で検証し、バーシング手順をシミュレートする。
論文 参考訳(メタデータ) (2023-09-20T21:25:52Z) - Constrained optimization of sensor placement for nuclear digital twins [1.7247618645684337]
センサ配置のための最適化フレームワークに制約を組み込んだデータ駆動手法を開発した。
低次元力学系に対する全ての実現可能な構成を網羅的に計算することで最適化されたセンサの有効性を実証する。
論文 参考訳(メタデータ) (2023-06-23T17:47:06Z) - Tightly-coupled Visual-DVL-Inertial Odometry for Robot-based Ice-water
Boundary Exploration [8.555466536537292]
ローカライズ精度を高めるために,マルチセンサ融合フレームワークを提案する。
画像、ドップラー速度ログ(DVL)、慣性測定ユニット(IMU)、圧力センサーが統合されている。
提案手法は,凍結氷下のフィールドで収集したデータセットを用いて検証した。
論文 参考訳(メタデータ) (2023-03-29T20:16:39Z) - Information-Based Sensor Placement for Data-Driven Estimation of
Unsteady Flows [0.0]
本稿では,データ駆動型フローフィールド推定のためのセンサ選択フレームワークを提案する。
このフレームワークは、データ駆動モデリング、定常カルマンフィルタ設計、およびセンサーの逐次選択のためのスパーシフィケーション技術を組み合わせている。
論文 参考訳(メタデータ) (2023-03-22T02:00:51Z) - Fluid Batching: Exit-Aware Preemptive Serving of Early-Exit Neural
Networks on Edge NPUs [74.83613252825754]
スマートエコシステム(smart ecosystems)"は、スタンドアロンではなく、センセーションが同時に行われるように形成されています。
これはデバイス上の推論パラダイムを、エッジにニューラル処理ユニット(NPU)をデプロイする方向にシフトしている。
そこで本研究では,実行時のプリエンプションが到着・終了プロセスによってもたらされる動的性を考慮に入れた,新しい早期終了スケジューリングを提案する。
論文 参考訳(メタデータ) (2022-09-27T15:04:01Z) - RIS-assisted UAV Communications for IoT with Wireless Power Transfer
Using Deep Reinforcement Learning [75.677197535939]
無人航空機(UAV)通信をサポートするIoTデバイスのための同時無線電力伝送と情報伝送方式を提案する。
第1フェーズでは、IoTデバイスが無線電力転送を通じてUAVからエネルギーを回収し、第2フェーズでは、UAVが情報伝送を通じてIoTデバイスからデータを収集する。
マルコフ決定過程を定式化し、ネットワーク総和率を最大化する最適化問題を解くために、2つの深い強化学習アルゴリズムを提案する。
論文 参考訳(メタデータ) (2021-08-05T23:55:44Z) - Efficient and Robust LiDAR-Based End-to-End Navigation [132.52661670308606]
我々は,LiDARをベースとした効率的なエンドツーエンドナビゲーションフレームワークを提案する。
本稿では,スパース畳み込みカーネル最適化とハードウェア対応モデル設計に基づくFast-LiDARNetを提案する。
次に,単一の前方通過のみから予測の不確かさを直接推定するハイブリッド・エビデンシャル・フュージョンを提案する。
論文 参考訳(メタデータ) (2021-05-20T17:52:37Z) - Predictive Maintenance for Edge-Based Sensor Networks: A Deep
Reinforcement Learning Approach [68.40429597811071]
未計画の設備停止のリスクは、収益発生資産の予測保守によって最小化することができる。
機器に基づくセンサネットワークのコンテキストから予測機器のメンテナンスを行うために,モデルフリーのDeep Reinforcement Learningアルゴリズムを提案する。
従来のブラックボックス回帰モデルとは異なり、提案アルゴリズムは最適なメンテナンスポリシーを自己学習し、各機器に対して実行可能なレコメンデーションを提供する。
論文 参考訳(メタデータ) (2020-07-07T10:00:32Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。