論文の概要: Orbital AI-based Autonomous Refuelling Solution
- arxiv url: http://arxiv.org/abs/2309.11648v1
- Date: Wed, 20 Sep 2023 21:25:52 GMT
- ステータス: 処理完了
- システム内更新日: 2023-09-22 17:44:18.205000
- Title: Orbital AI-based Autonomous Refuelling Solution
- Title(参考訳): 軌道AIに基づく自律給油ソリューション
- Authors: Duarte Rondao, Lei He, Nabil Aouf
- Abstract要約: 本稿では、ドッキングおよび軌道上サーベイシング(OOS)の主センサとしてのオンボード可視光カメラの利用を成熟させるAIベースのナビゲーションアルゴリズムの開発について述べる。
複数の畳み込みニューラルネットワークバックボーンアーキテクチャは、国際宇宙ステーション(ISS)とのドッキング操作の合成データに基づいてベンチマークされる
再給油機構の物理プロトタイプと溶液の統合を、ロボットアームを用いて実験室で検証し、バーシング手順をシミュレートする。
- 参考スコア(独自算出の注目度): 6.776059370975249
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Cameras are rapidly becoming the choice for on-board sensors towards space
rendezvous due to their small form factor and inexpensive power, mass, and
volume costs. When it comes to docking, however, they typically serve a
secondary role, whereas the main work is done by active sensors such as lidar.
This paper documents the development of a proposed AI-based (artificial
intelligence) navigation algorithm intending to mature the use of on-board
visible wavelength cameras as a main sensor for docking and on-orbit servicing
(OOS), reducing the dependency on lidar and greatly reducing costs.
Specifically, the use of AI enables the expansion of the relative navigation
solution towards multiple classes of scenarios, e.g., in terms of targets or
illumination conditions, which would otherwise have to be crafted on a
case-by-case manner using classical image processing methods. Multiple
convolutional neural network (CNN) backbone architectures are benchmarked on
synthetically generated data of docking manoeuvres with the International Space
Station (ISS), achieving position and attitude estimates close to 1%
range-normalised and 1 deg, respectively. The integration of the solution with
a physical prototype of the refuelling mechanism is validated in laboratory
using a robotic arm to simulate a berthing procedure.
- Abstract(参考訳): カメラは、小さなフォームファクターと安価な電力、質量、ボリュームコストのために、オンボードセンサーのスペースランデブーへの選択が急速に進んでいる。
しかしドッキングに関しては、通常は二次的な役割を担うが、主な仕事はライダーのようなアクティブなセンサーによって行われる。
本稿では,ドッキング・オン・オービット・サービテーション(oos)の主センサとして搭載可能な可視波長カメラの利用を成熟させ,lidarへの依存度を低減し,コストを大幅に削減することを目的とした,aiベースのナビゲーションアルゴリズムの開発について述べる。
具体的には、AIを使用することで、ターゲットや照明条件など、古典的な画像処理手法を使ってケースバイケースで作成する必要がある複数のシナリオのクラスへの相対的なナビゲーションソリューションの拡張が可能になる。
複数の畳み込みニューラルネットワーク(CNN)のバックボーンアーキテクチャは、国際宇宙ステーション(ISS)とのドッキング操作の合成データに基づいてベンチマークされ、それぞれ1%の領域正規化と1デグに近い位置と姿勢の推定が達成される。
再給油機構の物理的プロトタイプと溶液の統合は、ロボットアームを用いてバーシング手順をシミュレートするために実験室で検証される。
関連論文リスト
- On-orbit Servicing for Spacecraft Collision Avoidance With Autonomous Decision Making [0.0]
本研究は、宇宙船衝突回避演習(CAM)を支援するために、AIによるOOSミッションの実装を開発する。
本稿では、RL(Reinforcement Learning)を用いて訓練された自律型サーベイラを提案し、ターゲット衛星と宇宙デブリの衝突を自律的に検出し、絶滅危惧衛星とのランデブーとドッキングを行い、最適なCAMを実行する。
論文 参考訳(メタデータ) (2024-09-25T17:40:37Z) - Efficient Real-time Smoke Filtration with 3D LiDAR for Search and Rescue
with Autonomous Heterogeneous Robotic Systems [56.838297900091426]
スモークとダストは、搭載された知覚システムに依存するため、あらゆる移動ロボットプラットフォームの性能に影響を与える。
本稿では,重みと空間情報に基づく新しいモジュラー計算フィルタを提案する。
論文 参考訳(メタデータ) (2023-08-14T16:48:57Z) - Robotic Navigation Autonomy for Subretinal Injection via Intelligent
Real-Time Virtual iOCT Volume Slicing [88.99939660183881]
網膜下注射のための自律型ロボットナビゲーションの枠組みを提案する。
提案手法は,機器のポーズ推定方法,ロボットとi OCTシステム間のオンライン登録,およびインジェクションターゲットへのナビゲーションに適した軌道計画から構成される。
ブタ前眼の精度と再現性について実験を行った。
論文 参考訳(メタデータ) (2023-01-17T21:41:21Z) - Deep Learning for Real Time Satellite Pose Estimation on Low Power Edge
TPU [58.720142291102135]
本稿では,ニューラルネットワークアーキテクチャを利用したポーズ推定ソフトウェアを提案する。
我々は、低消費電力の機械学習アクセラレーターが宇宙での人工知能の活用を可能にしていることを示す。
論文 参考訳(メタデータ) (2022-04-07T08:53:18Z) - ADAPT: An Open-Source sUAS Payload for Real-Time Disaster Prediction and
Response with AI [55.41644538483948]
小型無人航空機システム(sUAS)は、多くの人道支援や災害対応作戦において顕著な構成要素となっている。
我々は,SUAS上にリアルタイムAIとコンピュータビジョンをデプロイするための,オープンソースのADAPTマルチミッションペイロードを開発した。
本研究では,河川氷の状態を監視し,破滅的な洪水現象をタイムリーに予測するための,リアルタイム・飛行中の氷分断の例を示す。
論文 参考訳(メタデータ) (2022-01-25T14:51:19Z) - Scalable Primitives for Generalized Sensor Fusion in Autonomous Vehicles [3.7543422202019427]
Generalized Sensor Fusion (GSF) は、センサ入力とターゲットタスクの両方がモジュラーで変更可能であるように設計されている。
これにより、AVシステムデザイナは、さまざまなセンサー構成や方法を簡単に試すことができ、異種艦隊に展開することが可能になる。
論文 参考訳(メタデータ) (2021-12-01T01:43:15Z) - SABER: Data-Driven Motion Planner for Autonomously Navigating
Heterogeneous Robots [112.2491765424719]
我々は、データ駆動型アプローチを用いて、異種ロボットチームをグローバルな目標に向けてナビゲートする、エンドツーエンドのオンラインモーションプランニングフレームワークを提案する。
モデル予測制御(SMPC)を用いて,ロボット力学を満たす制御入力を計算し,障害物回避時の不確実性を考慮した。
リカレントニューラルネットワークは、SMPC有限時間地平線解における将来の状態の不確かさを素早く推定するために用いられる。
ディープQ学習エージェントがハイレベルパスプランナーとして機能し、SMPCにロボットを望ましいグローバルな目標に向けて移動させる目標位置を提供する。
論文 参考訳(メタデータ) (2021-08-03T02:56:21Z) - Efficient and Robust LiDAR-Based End-to-End Navigation [132.52661670308606]
我々は,LiDARをベースとした効率的なエンドツーエンドナビゲーションフレームワークを提案する。
本稿では,スパース畳み込みカーネル最適化とハードウェア対応モデル設計に基づくFast-LiDARNetを提案する。
次に,単一の前方通過のみから予測の不確かさを直接推定するハイブリッド・エビデンシャル・フュージョンを提案する。
論文 参考訳(メタデータ) (2021-05-20T17:52:37Z) - Robust On-Manifold Optimization for Uncooperative Space Relative
Navigation with a Single Camera [4.129225533930966]
単分子装置のみを用いて、チェッカー宇宙船に対して対象物体の6次元ポーズを推定するために、革新的なモデルに基づくアプローチが実証された。
複雑な宇宙船エンビザットとランデブー軌道のリアルな合成と実験室のデータセットで検証されている。
論文 参考訳(メタデータ) (2020-05-14T16:23:04Z) - AutoSOS: Towards Multi-UAV Systems Supporting Maritime Search and Rescue
with Lightweight AI and Edge Computing [27.15999421608932]
本稿では,自律型マルチロボット探索・救助支援プラットフォームの開発を支援するAutoSOSプロジェクトの方向性について述べる。
このプラットフォームは、新しい適応型ディープラーニングアルゴリズムを用いて、環境の初期評価のための偵察ミッションを実行することを目的としている。
ドローンが潜在的な物体を見つけると、そのセンサーデータを船に送る。
論文 参考訳(メタデータ) (2020-05-07T12:22:15Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。