論文の概要: DailyDVS-200: A Comprehensive Benchmark Dataset for Event-Based Action Recognition
- arxiv url: http://arxiv.org/abs/2407.05106v2
- Date: Sat, 13 Jul 2024 15:42:57 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-16 23:47:23.974926
- Title: DailyDVS-200: A Comprehensive Benchmark Dataset for Event-Based Action Recognition
- Title(参考訳): DailyDVS-200: イベントベースのアクション認識のための総合ベンチマークデータセット
- Authors: Qi Wang, Zhou Xu, Yuming Lin, Jingtao Ye, Hongsheng Li, Guangming Zhu, Syed Afaq Ali Shah, Mohammed Bennamoun, Liang Zhang,
- Abstract要約: DailyDVS-200は、イベントベースのアクション認識コミュニティに適したベンチマークデータセットである。
実世界のシナリオで200のアクションカテゴリをカバーし、47人の参加者によって記録され、22,000以上のイベントシーケンスで構成されている。
DailyDVS-200には14の属性がアノテートされており、記録されたアクションの詳細なキャラクタリゼーションが保証されている。
- 参考スコア(独自算出の注目度): 51.96660522869841
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Neuromorphic sensors, specifically event cameras, revolutionize visual data acquisition by capturing pixel intensity changes with exceptional dynamic range, minimal latency, and energy efficiency, setting them apart from conventional frame-based cameras. The distinctive capabilities of event cameras have ignited significant interest in the domain of event-based action recognition, recognizing their vast potential for advancement. However, the development in this field is currently slowed by the lack of comprehensive, large-scale datasets, which are critical for developing robust recognition frameworks. To bridge this gap, we introduces DailyDVS-200, a meticulously curated benchmark dataset tailored for the event-based action recognition community. DailyDVS-200 is extensive, covering 200 action categories across real-world scenarios, recorded by 47 participants, and comprises more than 22,000 event sequences. This dataset is designed to reflect a broad spectrum of action types, scene complexities, and data acquisition diversity. Each sequence in the dataset is annotated with 14 attributes, ensuring a detailed characterization of the recorded actions. Moreover, DailyDVS-200 is structured to facilitate a wide range of research paths, offering a solid foundation for both validating existing approaches and inspiring novel methodologies. By setting a new benchmark in the field, we challenge the current limitations of neuromorphic data processing and invite a surge of new approaches in event-based action recognition techniques, which paves the way for future explorations in neuromorphic computing and beyond. The dataset and source code are available at https://github.com/QiWang233/DailyDVS-200.
- Abstract(参考訳): ニューロモルフィックセンサー、特にイベントカメラは、異常なダイナミックレンジ、最小レイテンシ、エネルギー効率でピクセル強度の変化を捉え、従来のフレームベースのカメラと区別することで、視覚データ取得に革命をもたらす。
イベントカメラの特徴的な能力は、イベントベースのアクション認識の領域に大きな関心を抱き、その進歩の可能性を認識している。
しかし、この分野での開発は、堅牢な認識フレームワークを開発する上で重要な、包括的な大規模データセットの欠如によって、現在遅くなっている。
このギャップを埋めるために、イベントベースのアクション認識コミュニティ用に微妙にキュレートされたベンチマークデータセットであるDailyDVS-200を紹介した。
DailyDVS-200は、実世界のシナリオにまたがる200のアクションカテゴリをカバーし、47人の参加者によって記録され、22,000以上のイベントシーケンスで構成されている。
このデータセットは、幅広いアクションタイプ、シーンの複雑さ、データ取得の多様性を反映するように設計されている。
データセットの各シーケンスには14の属性がアノテートされ、記録されたアクションの詳細なキャラクタリゼーションが保証される。
さらに、DailyDVS-200は幅広い研究パスを促進するために構成されており、既存のアプローチを検証し、新しい方法論を創出するための確かな基盤を提供する。
この分野に新しいベンチマークを設定することで、ニューロモルフィックデータ処理の現在の限界に挑戦し、イベントベースのアクション認識技術における新しいアプローチの急増を招き、ニューロモルフィックコンピューティングなどにおける将来の探索の道を開く。
データセットとソースコードはhttps://github.com/QiWang233/DailyDVS-200で公開されている。
関連論文リスト
- Descriptor: Face Detection Dataset for Programmable Threshold-Based Sparse-Vision [0.8271394038014485]
このデータセットは、Aff-Wild2で使用されるのと同じビデオから派生した顔検出タスクのための注釈付き、時間閾値ベースの視覚データセットである。
我々は,このリソースが時間差閾値に基づいて処理できるスマートセンサに基づく堅牢な視覚システムの開発を支援することを期待する。
論文 参考訳(メタデータ) (2024-10-01T03:42:03Z) - Event Stream based Human Action Recognition: A High-Definition Benchmark Dataset and Algorithms [29.577583619354314]
本稿では,CeleX-Vイベントカメラを用いた大規模かつ高精細度(1280×800ドル)の人間行動認識データセットを提案する。
より包括的なベンチマークデータセットを構築するために、今後比較する作業のために、20以上の主流なHARモデルを報告します。
論文 参考訳(メタデータ) (2024-08-19T07:52:20Z) - Research, Applications and Prospects of Event-Based Pedestrian Detection: A Survey [10.494414329120909]
生物学的網膜にインスパイアされたイベントベースのカメラは、最小限の電力要求、無視できるレイテンシ、時間分解能、拡張可能なダイナミックレンジによって区別される最先端のセンサーへと進化してきた。
イベントベースのカメラは、高速撮像のシナリオにおいて、外部データ伝送を誘発し、動きのぼやけをなくすことによって制限に対処する。
本稿では,特に自律運転における研究と応用について概観する。
論文 参考訳(メタデータ) (2024-07-05T06:17:00Z) - SARDet-100K: Towards Open-Source Benchmark and ToolKit for Large-Scale SAR Object Detection [79.23689506129733]
我々は,大規模SARオブジェクト検出のための新しいベンチマークデータセットとオープンソース手法を構築した。
私たちのデータセットであるSARDet-100Kは、10の既存のSAR検出データセットの厳格な調査、収集、標準化の結果です。
私たちの知る限りでは、SARDet-100KはCOCOレベルの大規模マルチクラスSARオブジェクト検出データセットとしては初めてのものです。
論文 参考訳(メタデータ) (2024-03-11T09:20:40Z) - SPADES: A Realistic Spacecraft Pose Estimation Dataset using Event
Sensing [9.583223655096077]
実際のターゲットデータセットへのアクセスが限られているため、アルゴリズムはしばしば合成データを使用して訓練され、実際のドメインに適用される。
イベントセンシングは過去にも行われており、シミュレーションと実世界のシナリオの間のドメインギャップを減らすことが示されている。
制御された実験室で取得した実イベントデータと、同じカメラ内在性を用いてイベントデータをシミュレートした新しいデータセットSPADESを提案する。
論文 参考訳(メタデータ) (2023-11-09T12:14:47Z) - SpikeMOT: Event-based Multi-Object Tracking with Sparse Motion Features [52.213656737672935]
SpikeMOTはイベントベースのマルチオブジェクトトラッカーである。
SpikeMOTはスパイクニューラルネットワークを使用して、オブジェクトに関連するイベントストリームからスパーステンポラルな特徴を抽出する。
論文 参考訳(メタデータ) (2023-09-29T05:13:43Z) - On the Generation of a Synthetic Event-Based Vision Dataset for
Navigation and Landing [69.34740063574921]
本稿では,最適な着陸軌道からイベントベースの視覚データセットを生成する手法を提案する。
我々は,惑星と小惑星の自然シーン生成ユーティリティを用いて,月面のフォトリアリスティックな画像のシーケンスを構築した。
パイプラインは500トラジェクトリのデータセットを構築することで,表面特徴の現実的なイベントベース表現を生成することができることを示す。
論文 参考訳(メタデータ) (2023-08-01T09:14:20Z) - Wild Face Anti-Spoofing Challenge 2023: Benchmark and Results [73.98594459933008]
顔認証システム(FAS)は、顔認識システムの完全性を保護するための重要なメカニズムである。
この制限は、公開可能なFASデータセットの不足と多様性の欠如に起因する可能性がある。
制約のない環境で収集された大規模で多様なFASデータセットであるWild Face Anti-Spoofingデータセットを紹介した。
論文 参考訳(メタデータ) (2023-04-12T10:29:42Z) - Learning Monocular Dense Depth from Events [53.078665310545745]
イベントカメラは、強度フレームではなく、非同期イベントのストリームの形式で輝度を変化させる。
最近の学習に基づくアプローチは、単眼深度予測のようなイベントベースのデータに適用されている。
本稿では,この課題を解決するための繰り返しアーキテクチャを提案し,標準フィードフォワード法よりも大幅に改善されていることを示す。
論文 参考訳(メタデータ) (2020-10-16T12:36:23Z) - Learning to Detect Objects with a 1 Megapixel Event Camera [14.949946376335305]
イベントカメラは、高時間精度、低データレート、高ダイナミックレンジで視覚情報を符号化する。
フィールドの新規性のため、多くのビジョンタスクにおけるイベントベースのシステムの性能は、従来のフレームベースのソリューションに比べて依然として低い。
論文 参考訳(メタデータ) (2020-09-28T16:03:59Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。