論文の概要: Lucy: Think and Reason to Solve Text-to-SQL
- arxiv url: http://arxiv.org/abs/2407.05153v1
- Date: Sat, 6 Jul 2024 18:56:42 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-09 20:58:28.703567
- Title: Lucy: Think and Reason to Solve Text-to-SQL
- Title(参考訳): Lucy: テキストからSQLへの解決を考えた理由
- Authors: Nina Narodytska, Shay Vargaftik,
- Abstract要約: 大規模言語モデル(LLM)は、自然言語でデータベースをクエリするユーザを支援するために大きな進歩を遂げた。
LLMは、多くの標準ベンチマークで最先端の結果を提供するが、大規模エンタープライズデータベースに適用した場合、その性能は著しく低下する。
本稿では,質問理解におけるLLMのパワーと,複雑なデータベース制約を扱う自動推論手法を組み合わせた新しい解を提案する。
- 参考スコア(独自算出の注目度): 12.52968634440807
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Large Language Models (LLMs) have made significant progress in assisting users to query databases in natural language. While LLM-based techniques provide state-of-the-art results on many standard benchmarks, their performance significantly drops when applied to large enterprise databases. The reason is that these databases have a large number of tables with complex relationships that are challenging for LLMs to reason about. We analyze challenges that LLMs face in these settings and propose a new solution that combines the power of LLMs in understanding questions with automated reasoning techniques to handle complex database constraints. Based on these ideas, we have developed a new framework that outperforms state-of-the-art techniques in zero-shot text-to-SQL on complex benchmarks
- Abstract(参考訳): 大規模言語モデル(LLM)は、自然言語でデータベースをクエリするユーザを支援するために大きな進歩を遂げた。
LLMベースの技術は多くの標準ベンチマークで最先端の結果を提供するが、大規模エンタープライズデータベースに適用された場合、その性能は著しく低下する。
なぜなら、これらのデータベースには複雑な関係を持つ多数のテーブルがあり、LCMが推論を困難にしているからです。
これらの設定でLLMが直面する課題を分析し、複雑なデータベース制約に対処する自動推論技術と質問理解におけるLLMの力を組み合わせた新しいソリューションを提案する。
これらのアイデアに基づいて、複雑なベンチマークにおいてゼロショットテキスト-SQLにおける最先端技術より優れた新しいフレームワークを開発した。
関連論文リスト
- Relational Database Augmented Large Language Model [59.38841050766026]
大規模言語モデル(LLM)は多くの自然言語処理(NLP)タスクに優れる。
彼らは、トレーニングや教師付き微調整プロセスを通じてのみ、新しい知識を取り入れることができる。
この正確で最新のプライベート情報は、通常リレーショナルデータベースに格納される。
論文 参考訳(メタデータ) (2024-07-21T06:19:10Z) - RB-SQL: A Retrieval-based LLM Framework for Text-to-SQL [48.516004807486745]
文脈内学習を伴う大規模言語モデル(LLM)は、テキスト・ツー・タスクの性能を大幅に改善した。
In-context prompt Engineering のための新しい検索ベースフレームワーク RB- を提案する。
実験により,我々のモデルは,公開データセットのBIRDとSpiderの競合ベースラインよりも優れた性能が得られることが示された。
論文 参考訳(メタデータ) (2024-07-11T08:19:58Z) - Can Long-Context Language Models Subsume Retrieval, RAG, SQL, and More? [54.667202878390526]
長文言語モデル(LCLM)は、従来、検索システムやデータベースといった外部ツールに依存していたタスクへのアプローチに革命をもたらす可能性がある。
実世界のタスクのベンチマークであるLOFTを導入し、文脈内検索と推論においてLCLMの性能を評価するために設計された数百万のトークンを出力する。
以上の結果からLCLMは,これらのタスクを明示的に訓練したことがないにも関わらず,最先端の検索システムやRAGシステムと競合する驚くべき能力を示した。
論文 参考訳(メタデータ) (2024-06-19T00:28:58Z) - Next-Generation Database Interfaces: A Survey of LLM-based Text-to-SQL [15.75829309721909]
自然言語の質問(text-to-)から正確なsqlを生成することは、長年にわたる課題である。
PLMはテキスト・ツー・タスクに利用され、有望な性能を実現している。
近年,大規模言語モデル (LLM) は自然言語理解において重要な機能を示している。
論文 参考訳(メタデータ) (2024-06-12T17:13:17Z) - TACT: Advancing Complex Aggregative Reasoning with Information Extraction Tools [51.576974932743596]
大規模言語モデル(LLM)は、テキスト間の情報の集約を必要とするクエリではよく機能しないことが多い。
この設定をよりよく評価し、モデリング作業を容易にするために、テーブルを通してのテキストと計算について紹介する。
TACTには、1つ以上のテキストに散在する縫合情報を要求し、この情報を複雑な統合して回答を生成する、困難な命令が含まれている。
論文 参考訳(メタデータ) (2024-06-05T20:32:56Z) - Benchmarking the Text-to-SQL Capability of Large Language Models: A
Comprehensive Evaluation [33.41556606816004]
大規模言語モデル(LLM)は、テキストからタスクへ進むための強力なツールとして登場した。
最適なプロンプトテンプレートと設計フレームワークについてはまだ合意が得られていない。
既存のベンチマークでは、テキスト・ツー・プロセスの様々なサブタスクにまたがるLCMのパフォーマンスが不十分である。
論文 参考訳(メタデータ) (2024-03-05T13:23:48Z) - Text-to-SQL Empowered by Large Language Models: A Benchmark Evaluation [76.76046657162306]
大規模言語モデル(LLM)はテキスト・ツー・タスクの新しいパラダイムとして登場した。
大規模言語モデル(LLM)はテキスト・ツー・タスクの新しいパラダイムとして登場した。
論文 参考訳(メタデータ) (2023-08-29T14:59:54Z) - SQL-PaLM: Improved Large Language Model Adaptation for Text-to-SQL (extended) [53.95151604061761]
本稿では,大規模言語モデル(LLM)を用いたテキスト・ツー・フィルタリングのフレームワークを提案する。
数発のプロンプトで、実行ベースのエラー解析による一貫性復号化の有効性について検討する。
命令の微調整により、チューニングされたLLMの性能に影響を及ぼす重要なパラダイムの理解を深める。
論文 参考訳(メタデータ) (2023-05-26T21:39:05Z) - Querying Large Language Models with SQL [16.383179496709737]
多くのユースケースでは、情報はテキストに格納されるが、構造化データでは利用できない。
事前訓練されたLarge Language Models (LLMs) の台頭に伴い、大量のテキストコーパスから抽出された情報を保存および使用するための効果的なソリューションが現在存在する。
本稿では,従来のデータベースアーキテクチャに基づくプロトタイプであるGaloisについて紹介する。
論文 参考訳(メタデータ) (2023-04-02T06:58:14Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。