論文の概要: BEAVER: An Enterprise Benchmark for Text-to-SQL
- arxiv url: http://arxiv.org/abs/2409.02038v1
- Date: Tue, 3 Sep 2024 16:37:45 GMT
- ステータス: 処理完了
- システム内更新日: 2024-09-06 00:21:46.632373
- Title: BEAVER: An Enterprise Benchmark for Text-to-SQL
- Title(参考訳): BEAVER: テキストからSQLへのエンタープライズベンチマーク
- Authors: Peter Baile Chen, Fabian Wenz, Yi Zhang, Moe Kayali, Nesime Tatbul, Michael Cafarella, Çağatay Demiralp, Michael Stonebraker,
- Abstract要約: 既存のテキストから生成するベンチマークは、Webから利用可能な表を使って構築されている。
本稿では,企業データウェアハウスデータを含むベンチマークに対して,既製のLCMを適用する。
以下に示すように、パフォーマンスの悪い理由は、主に3つの特徴による。
- 参考スコア(独自算出の注目度): 6.3900786001871195
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Existing text-to-SQL benchmarks have largely been constructed using publicly available tables from the web with human-generated tests containing question and SQL statement pairs. They typically show very good results and lead people to think that LLMs are effective at text-to-SQL tasks. In this paper, we apply off-the-shelf LLMs to a benchmark containing enterprise data warehouse data. In this environment, LLMs perform poorly, even when standard prompt engineering and RAG techniques are utilized. As we will show, the reasons for poor performance are largely due to three characteristics: (1) public LLMs cannot train on enterprise data warehouses because they are largely in the "dark web", (2) schemas of enterprise tables are more complex than the schemas in public data, which leads the SQL-generation task innately harder, and (3) business-oriented questions are often more complex, requiring joins over multiple tables and aggregations. As a result, we propose a new dataset BEAVER, sourced from real enterprise data warehouses together with natural language queries and their correct SQL statements which we collected from actual user history. We evaluated this dataset using recent LLMs and demonstrated their poor performance on this task. We hope this dataset will facilitate future researchers building more sophisticated text-to-SQL systems which can do better on this important class of data.
- Abstract(参考訳): 既存のテキスト-SQLベンチマークは、質問とSQLステートメントのペアを含む人間が生成したテストを使用して、Webから利用可能なテーブルを使用して構築されている。
彼らは通常、非常に良い結果を示し、LLMがテキストからSQLタスクに効果的であると考えるように導きます。
本稿では,企業データウェアハウスデータを含むベンチマークに対して,既製のLCMを適用する。
この環境では、標準のプロンプト技術やRAG技術を用いても、LLMは性能が良くない。
1 パブリック LLM は、主に "ダークウェブ" にあるため、エンタープライズデータウェアハウスでトレーニングできないこと、2 エンタープライズテーブルのスキーマは、公開データのスキーマよりも複雑であり、SQL 生成タスクを本質的に困難にしていること、3 ビジネス指向の質問は、多くの場合、より複雑で、複数のテーブルとアグリゲーションを結合する必要がある。
その結果,実際のユーザ履歴から収集した自然言語クエリとそれらの正しいSQLステートメントとともに,実際のエンタープライズデータウェアハウスから得られた新たなデータセットBEAVERを提案する。
我々は,このデータセットを最近のLLMを用いて評価し,その性能を実証した。
このデータセットは、将来の研究者がより高度なテキストからSQLシステムを構築するのに役立つことを期待しています。
関連論文リスト
- Relational Database Augmented Large Language Model [59.38841050766026]
大規模言語モデル(LLM)は多くの自然言語処理(NLP)タスクに優れる。
彼らは、トレーニングや教師付き微調整プロセスを通じてのみ、新しい知識を取り入れることができる。
この正確で最新のプライベート情報は、通常リレーショナルデータベースに格納される。
論文 参考訳(メタデータ) (2024-07-21T06:19:10Z) - RB-SQL: A Retrieval-based LLM Framework for Text-to-SQL [48.516004807486745]
文脈内学習を伴う大規模言語モデル(LLM)は、テキスト・ツー・タスクの性能を大幅に改善した。
In-context prompt Engineering のための新しい検索ベースフレームワーク RB- を提案する。
実験により,我々のモデルは,公開データセットのBIRDとSpiderの競合ベースラインよりも優れた性能が得られることが示された。
論文 参考訳(メタデータ) (2024-07-11T08:19:58Z) - Lucy: Think and Reason to Solve Text-to-SQL [12.52968634440807]
大規模言語モデル(LLM)は、自然言語でデータベースをクエリするユーザを支援するために大きな進歩を遂げた。
LLMは、多くの標準ベンチマークで最先端の結果を提供するが、大規模エンタープライズデータベースに適用した場合、その性能は著しく低下する。
本稿では,質問理解におけるLLMのパワーと,複雑なデータベース制約を扱う自動推論手法を組み合わせた新しい解を提案する。
論文 参考訳(メタデータ) (2024-07-06T18:56:42Z) - TACT: Advancing Complex Aggregative Reasoning with Information Extraction Tools [51.576974932743596]
大規模言語モデル(LLM)は、テキスト間の情報の集約を必要とするクエリではよく機能しないことが多い。
この設定をよりよく評価し、モデリング作業を容易にするために、テーブルを通してのテキストと計算について紹介する。
TACTには、1つ以上のテキストに散在する縫合情報を要求し、この情報を複雑な統合して回答を生成する、困難な命令が含まれている。
論文 参考訳(メタデータ) (2024-06-05T20:32:56Z) - PET-SQL: A Prompt-Enhanced Two-Round Refinement of Text-to-SQL with Cross-consistency [19.067737007347613]
スパイダーベンチマークで新しいSOTA結果が得られ、実行精度は87.6%である。
提案手法は, 87.6%の精度で, スパイダーベンチマークで新しいSOTA結果が得られる。
論文 参考訳(メタデータ) (2024-03-13T02:32:41Z) - Knowledge-to-SQL: Enhancing SQL Generation with Data Expert LLM [15.888784472807775]
既存のメソッドは、クエリを生成するための大規模言語モデル(LLM)の包括的な機能に依存している。
我々は,すべてのテキスト・トゥ・モデルに対して適切な知識を利用する知識・ツー・データ・エキスパート・フレームワークを提案する。
論文 参考訳(メタデータ) (2024-02-18T09:10:04Z) - Text-to-SQL Empowered by Large Language Models: A Benchmark Evaluation [76.76046657162306]
大規模言語モデル(LLM)はテキスト・ツー・タスクの新しいパラダイムとして登場した。
大規模言語モデル(LLM)はテキスト・ツー・タスクの新しいパラダイムとして登場した。
論文 参考訳(メタデータ) (2023-08-29T14:59:54Z) - SQL-PaLM: Improved Large Language Model Adaptation for Text-to-SQL (extended) [53.95151604061761]
本稿では,大規模言語モデル(LLM)を用いたテキスト・ツー・フィルタリングのフレームワークを提案する。
数発のプロンプトで、実行ベースのエラー解析による一貫性復号化の有効性について検討する。
命令の微調整により、チューニングされたLLMの性能に影響を及ぼす重要なパラダイムの理解を深める。
論文 参考訳(メタデータ) (2023-05-26T21:39:05Z) - Can LLM Already Serve as A Database Interface? A BIg Bench for
Large-Scale Database Grounded Text-to-SQLs [89.68522473384522]
テキストから効率のよいタスクをベースとした大規模データベースのための大規模なベンチマークであるBirdを紹介します。
データベースの値に重点を置いていると、汚いデータベースコンテンツに対する新たな課題が浮き彫りになる。
最も効果的なテキストから効率のよいモデルであるChatGPTでさえ、実行精度はわずか40.08%である。
論文 参考訳(メタデータ) (2023-05-04T19:02:29Z) - Querying Large Language Models with SQL [16.383179496709737]
多くのユースケースでは、情報はテキストに格納されるが、構造化データでは利用できない。
事前訓練されたLarge Language Models (LLMs) の台頭に伴い、大量のテキストコーパスから抽出された情報を保存および使用するための効果的なソリューションが現在存在する。
本稿では,従来のデータベースアーキテクチャに基づくプロトタイプであるGaloisについて紹介する。
論文 参考訳(メタデータ) (2023-04-02T06:58:14Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。