Low-depth Quantum Circuit Decomposition of Multi-controlled Gates
- URL: http://arxiv.org/abs/2407.05162v1
- Date: Sat, 6 Jul 2024 19:42:38 GMT
- Title: Low-depth Quantum Circuit Decomposition of Multi-controlled Gates
- Authors: Thiago Melo D. Azevedo, Jefferson D. S. Silva, Adenilton J. da Silva,
- Abstract summary: Best decomposition of an n-controlled X gate with one borrowed ancilla produces circuits with degree 3 polylogarithmic depth.
A proposed n-controlled X gate with one borrowed ancilla has the shortest circuit depth in the literature.
One can reproduce all the results with the freely available open-source code provided in a public repository.
- Score: 0.8520624117635328
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Multi-controlled gates are fundamental components in the design of quantum algorithms, where efficient decompositions of these operators can enhance algorithm performance. The best asymptotic decomposition of an n-controlled X gate with one borrowed ancilla into single qubit and CNOT gates produces circuits with degree 3 polylogarithmic depth and employs a divide-and-conquer strategy. In this paper, we reduce the number of recursive calls in the divide-and-conquer algorithm and decrease the depth of n-controlled X gate decomposition to a degree of 2.799 polylogarithmic depth. With this optimized decomposition, we also reduce the depth of n-controlled SU(2) gates and approximate n-controlled U(2) gates. Decompositions described in this work achieve the lowest asymptotic depth reported in the literature. We also perform an optimization in the base of the recursive approach. Starting at 52 control qubits, the proposed n-controlled X gate with one borrowed ancilla has the shortest circuit depth in the literature. One can reproduce all the results with the freely available open-source code provided in a public repository.
Related papers
- On the Constant Depth Implementation of Pauli Exponentials [49.48516314472825]
We decompose arbitrary exponentials into circuits of constant depth using $mathcalO(n)$ ancillae and two-body XX and ZZ interactions.
We prove the correctness of our approach, after introducing novel rewrite rules for circuits which benefit from qubit recycling.
arXiv Detail & Related papers (2024-08-15T17:09:08Z) - Multi-controlled single-qubit unitary gates based on the quantum Fourier transform [0.0]
Multi-controlled (MC) unitary (U) gates are widely employed in quantum algorithms and circuits.
Few state-of-the-art decompositions of MCU gates use non-elementary $C-R_x$ and $C-U1/2m-1$ gates.
Our approach is based on two generalizations of the multi-controlled X (MCX) gate.
arXiv Detail & Related papers (2024-08-01T21:56:02Z) - Optimal control in large open quantum systems: the case of transmon readout and reset [44.99833362998488]
We present a framework that combines the adjoint state method together with reverse-time back-propagation to solve prohibitively large open-system quantum control problems.
We apply this framework to optimize two inherently dissipative operations in superconducting qubits.
Our results show that, given a fixed set of system parameters, shaping the control pulses can yield 2x improvements in the fidelity and duration for both of these operations.
arXiv Detail & Related papers (2024-03-21T18:12:51Z) - Linear decomposition of approximate multi-controlled single qubit gates [0.8520624117635328]
We provide a method for compiling approximate multi-controlled single qubit gates into quantum circuits without ancilla qubits.
The total number of elementary gates to decompose an n-qubit multi-controlled gate is proportional to 32n.
arXiv Detail & Related papers (2023-10-23T14:23:08Z) - Decomposition of Multi-controlled Special Unitary Single-Qubit Gates [1.412197703754359]
Multi-controlled unitary gates have been a subject of interest in quantum computing since its inception.
Current state-of-the-art approach to implementing n-qubit multi-controlled gates involves the use of a quadratic number of single-qubit and CNOT gates.
We present a new decomposition of n-qubit multi-controlled SU(2) gates that requires a circuit with a number of CNOT gates proportional to 20n.
arXiv Detail & Related papers (2023-02-13T14:08:53Z) - Extensive characterization of a family of efficient three-qubit gates at
the coherence limit [0.4471952592011114]
We implement a three-qubit gate by simultaneously applying two-qubit operations.
We generate two classes of entangled states, the GHZ and W states, by applying the new gate only once.
We analyze the experimental and statistical errors on the fidelity of the gates and of the target states.
arXiv Detail & Related papers (2022-07-06T19:42:29Z) - Efficient quantum gate decomposition via adaptive circuit compression [0.0]
The utilization of parametric two-qubit gates in the circuit design allows us to transform the discrete problem of circuit synthesis into an optimization problem over continuous variables.
We implemented the algorithm in the SQUANDER software package and benchmarked it against several state-of-the-art quantum gate synthesis tools.
arXiv Detail & Related papers (2022-03-08T22:29:31Z) - Software mitigation of coherent two-qubit gate errors [55.878249096379804]
Two-qubit gates are important components of quantum computing.
But unwanted interactions between qubits (so-called parasitic gates) can degrade the performance of quantum applications.
We present two software methods to mitigate parasitic two-qubit gate errors.
arXiv Detail & Related papers (2021-11-08T17:37:27Z) - Efficient Algorithms for Causal Order Discovery in Quantum Networks [44.356294905844834]
Given black-box access to the input and output systems, we develop the first efficient quantum causal order discovery algorithm.
We model the causal order with quantum combs, and our algorithms output the order of inputs and outputs that the given process is compatible with.
Our algorithms will provide efficient ways to detect and optimize available transmission paths in quantum communication networks.
arXiv Detail & Related papers (2020-12-03T07:12:08Z) - Improving the Performance of Deep Quantum Optimization Algorithms with
Continuous Gate Sets [47.00474212574662]
Variational quantum algorithms are believed to be promising for solving computationally hard problems.
In this paper, we experimentally investigate the circuit-depth-dependent performance of QAOA applied to exact-cover problem instances.
Our results demonstrate that the use of continuous gate sets may be a key component in extending the impact of near-term quantum computers.
arXiv Detail & Related papers (2020-05-11T17:20:51Z) - Lagrangian Decomposition for Neural Network Verification [148.0448557991349]
A fundamental component of neural network verification is the computation of bounds on the values their outputs can take.
We propose a novel approach based on Lagrangian Decomposition.
We show that we obtain bounds comparable with off-the-shelf solvers in a fraction of their running time.
arXiv Detail & Related papers (2020-02-24T17:55:10Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.