論文の概要: A Generalized Transformer-based Radio Link Failure Prediction Framework in 5G RANs
- arxiv url: http://arxiv.org/abs/2407.05197v1
- Date: Sat, 6 Jul 2024 21:57:23 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-09 20:46:54.647458
- Title: A Generalized Transformer-based Radio Link Failure Prediction Framework in 5G RANs
- Title(参考訳): 5G RANにおける一般化変圧器を用いた無線リンク故障予測フレームワーク
- Authors: Kazi Hasan, Thomas Trappenberg, Israat Haque,
- Abstract要約: 本稿では,グラフニューラルネットワーク(GNN)に基づく学習可能な気象効果集約モジュールを導入した新しいRLF予測フレームワークであるGenTrapを提案する。
我々は、GenTrapを260万のデータポイントを持つ2つの実世界のデータセットで評価し、GenTrapがF1スコア(農村では0.93、都市では0.79)を、そのデータセットよりもはるかに高く提供していることを示す。
- 参考スコア(独自算出の注目度): 2.519319150166215
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Radio link failure (RLF) prediction system in Radio Access Networks (RANs) is critical for ensuring seamless communication and meeting the stringent requirements of high data rates, low latency, and improved reliability in 5G networks. However, weather conditions such as precipitation, humidity, temperature, and wind impact these communication links. Usually, historical radio link Key Performance Indicators (KPIs) and their surrounding weather station observations are utilized for building learning-based RLF prediction models. However, such models must be capable of learning the spatial weather context in a dynamic RAN and effectively encoding time series KPIs with the weather observation data. Existing works fail to incorporate both of these essential design aspects of the prediction models. This paper fills the gap by proposing GenTrap, a novel RLF prediction framework that introduces a graph neural network (GNN)-based learnable weather effect aggregation module and employs state-of-the-art time series transformer as the temporal feature extractor for radio link failure prediction. The proposed aggregation method of GenTrap can be integrated into any existing prediction model to achieve better performance and generalizability. We evaluate GenTrap on two real-world datasets (rural and urban) with 2.6 million KPI data points and show that GenTrap offers a significantly higher F1-score (0.93 for rural and 0.79 for urban) compared to its counterparts while possessing generalization capability.
- Abstract(参考訳): LAN(Radio Access Networks)における無線リンク障害(RLF)予測システムは,高データレート,低レイテンシ,5Gネットワークの信頼性向上といった厳密な要求を満たすために重要である。
しかし、降水、湿度、気温、風などの気象条件がこれらの通信に影響を及ぼす。
通常、KPI(Key Performance Indicators)とその周辺の気象観測は、学習に基づくRLF予測モデルの構築に利用される。
しかし、このようなモデルでは、動的RANで空間気象コンテキストを学習し、気象観測データを用いて時系列KPIを効果的に符号化できなければならない。
既存の作業は、予測モデルのこれらの重要な設計側面の両方を組み込むことができない。
本稿では,グラフニューラルネットワーク(GNN)に基づく学習可能な気象効果集約モジュールを導入した新しいRLF予測フレームワークであるGenTrapを提案し,そのギャップを埋める。
GenTrapのアグリゲーション手法は、既存の予測モデルに組み込んで、より良い性能と一般化性を実現することができる。
我々はGenTrapを260万KPIのデータポイントを持つ2つの実世界のデータセット(農村部と都市部)で評価し、GenTrapが一般化能力を持ちながらF1スコア(農村部は0.93、都市部は0.79)を大幅に高めていることを示す。
関連論文リスト
- Tackling Data Heterogeneity in Federated Time Series Forecasting [61.021413959988216]
時系列予測は、エネルギー消費予測、病気の伝染モニタリング、天気予報など、様々な実世界の応用において重要な役割を果たす。
既存のほとんどのメソッドは、分散デバイスから中央クラウドサーバに大量のデータを収集する、集中的なトレーニングパラダイムに依存しています。
本稿では,情報合成データを補助的知識キャリアとして生成することにより,データの均一性に対処する新しいフレームワークであるFed-TRENDを提案する。
論文 参考訳(メタデータ) (2024-11-24T04:56:45Z) - Advancing Heatwave Forecasting via Distribution Informed-Graph Neural Networks (DI-GNNs): Integrating Extreme Value Theory with GNNs [3.1648929705158357]
極端な熱の長い期間である熱波は、気候変動による頻度と重大さを増している。
気象スケール(1~15日)での正確な熱波予測は、大気中のドライバ間の非線形相互作用と、これらの極端な事象の希少性により、依然として困難である。
本研究では、極値理論(EVT)の原理をグラフニューラルネットワークアーキテクチャに統合する新しいフレームワークであるDis Distribution-Informed Graph Neural Network (DI-GNN)を紹介する。
論文 参考訳(メタデータ) (2024-11-20T17:45:03Z) - VECTOR: Velocity-Enhanced GRU Neural Network for Real-Time 3D UAV Trajectory Prediction [2.1825723033513165]
シーケンスベースニューラルネットワークにおけるGRU(Gated Recurrent Units)を用いた新しいトラジェクトリ予測手法を提案する。
我々は、合成と実世界のUAV軌跡データの両方を使用し、幅広い飛行パターン、速度、機敏性を捉えています。
GRUベースのモデルは、平均二乗誤差(MSE)を2×10-8に抑えながら、最先端のRNNアプローチを著しく上回っている。
論文 参考訳(メタデータ) (2024-10-24T07:16:42Z) - Multi-modal graph neural networks for localized off-grid weather forecasting [3.890177521606208]
機械学習や数値気象モデルによる天気予報製品は、現在、グローバル・レギュラー・グリッドで作成されている。
本研究では、異種グラフニューラルネットワーク(GNN)をエンドツーエンドにトレーニングし、グリッド化された予測をダウンスケールして、関心のある場所をオフグリッドする。
提案手法は,グローバルな大規模気象モデルと局所的高精度な予測とのギャップを橋渡しして,局所的な意思決定に役立てることができることを示す。
論文 参考訳(メタデータ) (2024-10-16T18:25:43Z) - FengWu: Pushing the Skillful Global Medium-range Weather Forecast beyond
10 Days Lead [93.67314652898547]
人工知能(AI)に基づく高度データ駆動型中距離気象予報システムFengWuについて紹介する。
FengWuは大気力学を正確に再現し、0.25度緯度で37の垂直レベルで将来の陸と大気の状態を予測することができる。
その結果、FengWuは予測能力を大幅に向上させ、熟練した中距離気象予報を10.75日間のリードまで拡張できることがわかった。
論文 参考訳(メタデータ) (2023-04-06T09:16:39Z) - DL-Corrector-Remapper: A grid-free bias-correction deep learning
methodology for data-driven high-resolution global weather forecasting [11.334341754942917]
我々はFourCastNet(FCN)の一様予測を補正し、再マップし、微調整する手法を開発した。
これは、数値天気予報(NWP)のバイアス補正と後処理に似ている
私たちはこのネットワークをDLCR(Deep-Learning-Corrector-Remapper)と呼ぶ。
論文 参考訳(メタデータ) (2022-10-21T23:04:44Z) - Time-to-Green predictions for fully-actuated signal control systems with
supervised learning [56.66331540599836]
本稿では,集約信号とループ検出データを用いた時系列予測フレームワークを提案する。
我々は、最先端の機械学習モデルを用いて、将来の信号位相の持続時間を予測する。
スイスのチューリッヒの信号制御システムから得られた経験的データに基づいて、機械学習モデルが従来の予測手法より優れていることを示す。
論文 参考訳(メタデータ) (2022-08-24T07:50:43Z) - Variational Autoencoder Assisted Neural Network Likelihood RSRP
Prediction Model [2.881201648416745]
MDTデータとデジタルツイン(DT)を利用したRSRP予測のための生成モデルについて検討する。
実世界のデータを用いた提案モデルでは,実証モデルと比較して約20%以上の精度向上が示されている。
論文 参考訳(メタデータ) (2022-06-27T17:27:35Z) - Forecasting large-scale circulation regimes using deformable
convolutional neural networks and global spatiotemporal climate data [86.1450118623908]
変形可能な畳み込みニューラルネットワーク(deCNN)に基づく教師あり機械学習手法の検討
今後1~15日にわたって北大西洋-欧州の気象条件を予測した。
より広い視野で見れば、通常の畳み込みニューラルネットワークよりも5~6日を超えるリードタイムでかなり優れた性能を発揮することが分かる。
論文 参考訳(メタデータ) (2022-02-10T11:37:00Z) - Lidar Light Scattering Augmentation (LISA): Physics-based Simulation of
Adverse Weather Conditions for 3D Object Detection [60.89616629421904]
ライダーベースの物体検出器は、自動運転車のような自律ナビゲーションシステムにおいて、3D知覚パイプラインの重要な部分である。
降雨、雪、霧などの悪天候に敏感で、信号-雑音比(SNR)と信号-背景比(SBR)が低下している。
論文 参考訳(メタデータ) (2021-07-14T21:10:47Z) - Predicting traffic signals on transportation networks using
spatio-temporal correlations on graphs [56.48498624951417]
本稿では,複数の熱拡散カーネルをデータ駆動予測モデルにマージして交通信号を予測する交通伝搬モデルを提案する。
予測誤差を最小限に抑えるためにベイズ推定を用いてモデルパラメータを最適化し,2つの手法の混合率を決定する。
提案モデルでは,計算労力の少ない最先端のディープニューラルネットワークに匹敵する予測精度を示す。
論文 参考訳(メタデータ) (2021-04-27T18:17:42Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。