論文の概要: Federated Knowledge Transfer Fine-tuning Large Server Model with Resource-Constrained IoT Clients
- arxiv url: http://arxiv.org/abs/2407.05268v1
- Date: Sun, 7 Jul 2024 05:46:01 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-09 20:27:05.596319
- Title: Federated Knowledge Transfer Fine-tuning Large Server Model with Resource-Constrained IoT Clients
- Title(参考訳): リソース制約型IoTクライアントを用いたファインチューニング大型サーバモデルのフェデレーション知識伝達
- Authors: Shaoyuan Chen, Linlin You, Rui Liu, Shuo Yu, Ahmed M. Abdelmoniem,
- Abstract要約: 我々は、モノのインターネットにおける大規模モデルのトレーニングを促進するために、KoALA(Federated Knowledge Transfer Fine-tuning Large Server Model with Resource-Constrained IoT Clients)を提案する。
フェデレートされた学習と知識の蒸留を利用して、小さなモデルとのコラボレーションを通じて大きなモデルを更新する。
また,本手法は,類似のトレーニング性能を実現するだけでなく,ローカルストレージやコンピュータパワーリソースの必要性を著しく低減する。
- 参考スコア(独自算出の注目度): 10.305544603479163
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The training of large models, involving fine-tuning, faces the scarcity of high-quality data. Compared to the solutions based on centralized data centers, updating large models in the Internet of Things (IoT) faces challenges in coordinating knowledge from distributed clients by using their private and heterogeneous data. To tackle such a challenge, we propose KOALA (Federated Knowledge Transfer Fine-tuning Large Server Model with Resource-Constrained IoT Clients) to impel the training of large models in IoT. Since the resources obtained by IoT clients are limited and restricted, it is infeasible to locally execute large models and also update them in a privacy-preserving manner. Therefore, we leverage federated learning and knowledge distillation to update large models through collaboration with their small models, which can run locally at IoT clients to process their private data separately and enable large-small model knowledge transfer through iterative learning between the server and clients. Moreover, to support clients with similar or different computing capacities, KOALA is designed with two kinds of large-small model joint learning modes, namely to be homogeneous or heterogeneous. Experimental results demonstrate that compared to the conventional approach, our method can not only achieve similar training performance but also significantly reduce the need for local storage and computing power resources.
- Abstract(参考訳): 微調整を含む大規模なモデルのトレーニングは、高品質なデータの不足に直面します。
集中型データセンタに基づくソリューションと比較して、IoT(Internet of Things)の大規模モデルのアップデートは、プライベートデータとヘテロジニアスデータを使用することで、分散クライアントからの知識を調整する上での課題に直面している。
このような課題に対処するため、我々は、IoTにおける大規模モデルのトレーニングを促進するために、KoALA(Federated Knowledge Transfer Fine-tuning Large Server Model with Resource-Constrained IoT Clients)を提案する。
IoTクライアントが取得するリソースは限定的かつ制限的であるため、大規模なモデルをローカルに実行し、プライバシ保護の方法で更新することは不可能である。
これにより、IoTクライアントでローカルに動作してプライベートデータを別々に処理し、サーバとクライアント間の反復学習による大規模モデルの知識伝達を可能にする。
さらに、類似または異なる計算能力を持つクライアントをサポートするために、KOALAは2種類の大小モデルのジョイントラーニングモード、すなわち同種または異種であるように設計されている。
実験結果から,本手法は従来の手法と比較して,類似の訓練性能を達成できるだけでなく,ローカルストレージやコンピュータパワーリソースの必要性を大幅に低減できることが示された。
関連論文リスト
- FedMoE-DA: Federated Mixture of Experts via Domain Aware Fine-grained Aggregation [22.281467168796645]
Federated Learning(FL)は、複数のクライアントがプライベートデータを共有せずにモデルをトレーニングできる、コラボレーティブな機械学習アプローチである。
我々は、新しいドメイン認識、きめ細かい集約戦略を取り入れた新しいFLモデルトレーニングフレームワークであるFedMoE-DAを提案し、ロバスト性、パーソナライズ性、通信効率を同時に向上する。
論文 参考訳(メタデータ) (2024-11-04T14:29:04Z) - Diffusion-Based Neural Network Weights Generation [80.89706112736353]
D2NWGは拡散に基づくニューラルネットワーク重み生成技術であり、転送学習のために高性能な重みを効率よく生成する。
本稿では,ニューラルネットワーク重み生成のための遅延拡散パラダイムを再放送するために,生成的ハイパー表現学習を拡張した。
我々のアプローチは大規模言語モデル(LLM)のような大規模アーキテクチャにスケーラブルであり、現在のパラメータ生成技術の限界を克服しています。
論文 参考訳(メタデータ) (2024-02-28T08:34:23Z) - PFSL: Personalized & Fair Split Learning with Data & Label Privacy for
thin clients [0.5144809478361603]
PFSLは分散分割学習の新しいフレームワークであり、多数のシンクライアントが並列にトランスファー学習を行う。
クライアントモデルのパーソナライズを行うための軽量なステップを実装し,それぞれのデータ分布に対して高いパフォーマンスを実現する。
我々の精度は現在のアルゴリズムSLをはるかに上回り、いくつかの実生活ベンチマークにおける集中学習に非常に近い。
論文 参考訳(メタデータ) (2023-03-19T10:38:29Z) - Scalable Collaborative Learning via Representation Sharing [53.047460465980144]
フェデレートラーニング(FL)とスプリットラーニング(SL)は、データを(デバイス上で)プライベートにしながら協調学習を可能にする2つのフレームワークである。
FLでは、各データ保持者がモデルをローカルにトレーニングし、集約のために中央サーバにリリースする。
SLでは、クライアントは個々のカット層アクティベーション(スマッシュされたデータ)をサーバにリリースし、そのレスポンス(推論とバックの伝搬の両方)を待つ必要があります。
本研究では, クライアントがオンライン知識蒸留を通じて, 対照的な損失を生かして協調する, プライバシ保護機械学習の新しいアプローチを提案する。
論文 参考訳(メタデータ) (2022-11-20T10:49:22Z) - Meta Knowledge Condensation for Federated Learning [65.20774786251683]
既存のフェデレートされた学習パラダイムは通常、より強力なモデルを達成するために、中央の解決器で分散モデルを広範囲に交換する。
これにより、特にデータ分散が不均一である場合、サーバと複数のクライアントの間で深刻な通信負荷が発生します。
既存のパラダイムとは違って,フェデレート学習におけるコミュニケーションコストを大幅に削減する新たな視点を導入する。
論文 参考訳(メタデータ) (2022-09-29T15:07:37Z) - No One Left Behind: Inclusive Federated Learning over Heterogeneous
Devices [79.16481453598266]
この問題に対処するクライアント包摂的フェデレーション学習手法であるInclusiveFLを提案する。
InclusiveFLの中核となる考え方は、異なるサイズのモデルを異なる計算能力を持つクライアントに割り当てることである。
また,異なる大きさの複数の局所モデル間で知識を共有する効果的な手法を提案する。
論文 参考訳(メタデータ) (2022-02-16T13:03:27Z) - FedGEMS: Federated Learning of Larger Server Models via Selective
Knowledge Fusion [19.86388925556209]
フェデレートラーニング(FL)は、データをプライベートに保ちながらグローバルモデルを学ぶための実行可能なソリューションとして登場した。
本研究では,FLのモデル容量を突破する強力なサーバモデルを活用するための新しいパラダイムについて検討する。
論文 参考訳(メタデータ) (2021-10-21T10:06:44Z) - FedKD: Communication Efficient Federated Learning via Knowledge
Distillation [56.886414139084216]
フェデレーション学習は、分散データからインテリジェントモデルを学ぶために広く使用されている。
フェデレートラーニングでは、クライアントはモデルラーニングの各イテレーションでローカルモデルの更新を伝える必要がある。
本稿では,知識蒸留に基づくコミュニケーション効率のよいフェデレーション学習手法を提案する。
論文 参考訳(メタデータ) (2021-08-30T15:39:54Z) - Decentralized Federated Learning via Mutual Knowledge Transfer [37.5341683644709]
分散型連合学習(DFL)は、モノのインターネット(IoT)システムにおける問題です。
現地のクライアントが学習した知識を相互に転送することでモデルを融合させる相互知識伝達(Def-KT)アルゴリズムを提案します。
MNIST, Fashion-MNIST, CIFAR10データセットに対する実験により,提案アルゴリズムがベースラインDFL法を著しく上回るデータセットを明らかにした。
論文 参考訳(メタデータ) (2020-12-24T01:43:53Z) - Federated Mutual Learning [65.46254760557073]
Federated Mutual Leaning (FML)は、クライアントが汎用モデルとパーソナライズされたモデルを独立してトレーニングすることを可能にする。
実験により、FMLは一般的なフェデレート学習環境よりも優れた性能が得られることが示された。
論文 参考訳(メタデータ) (2020-06-27T09:35:03Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。