論文の概要: Personalized Hierarchical Split Federated Learning in Wireless Networks
- arxiv url: http://arxiv.org/abs/2411.06042v1
- Date: Sat, 09 Nov 2024 02:41:53 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-12 14:07:09.323507
- Title: Personalized Hierarchical Split Federated Learning in Wireless Networks
- Title(参考訳): 無線ネットワークにおけるパーソナライズされた階層的フェデレーション学習
- Authors: Md-Ferdous Pervej, Andreas F. Molisch,
- Abstract要約: 本稿では、パーソナライズ性能の向上を目的とした、パーソナライズされた階層分割型フェデレーション学習(PHSFL)アルゴリズムを提案する。
まず、モデル分割と階層モデル集約がグローバルモデルに与える影響を理解するために、広範囲な理論的解析を行う。
グローバルモデルがトレーニングされると、各クライアントを微調整してパーソナライズされたモデルを取得します。
- 参考スコア(独自算出の注目度): 24.664469755746463
- License:
- Abstract: Extreme resource constraints make large-scale machine learning (ML) with distributed clients challenging in wireless networks. On the one hand, large-scale ML requires massive information exchange between clients and server(s). On the other hand, these clients have limited battery and computation powers that are often dedicated to operational computations. Split federated learning (SFL) is emerging as a potential solution to mitigate these challenges, by splitting the ML model into client-side and server-side model blocks, where only the client-side block is trained on the client device. However, practical applications require personalized models that are suitable for the client's personal task. Motivated by this, we propose a personalized hierarchical split federated learning (PHSFL) algorithm that is specially designed to achieve better personalization performance. More specially, owing to the fact that regardless of the severity of the statistical data distributions across the clients, many of the features have similar attributes, we only train the body part of the federated learning (FL) model while keeping the (randomly initialized) classifier frozen during the training phase. We first perform extensive theoretical analysis to understand the impact of model splitting and hierarchical model aggregations on the global model. Once the global model is trained, we fine-tune each client classifier to obtain the personalized models. Our empirical findings suggest that while the globally trained model with the untrained classifier performs quite similarly to other existing solutions, the fine-tuned models show significantly improved personalized performance.
- Abstract(参考訳): 極端なリソース制約は、無線ネットワークにおいて分散クライアントと大規模な機械学習(ML)を実現する。
一方、大規模なMLでは、クライアントとサーバの間で大量の情報交換が必要である。
一方、これらのクライアントはバッテリーと計算能力が限られており、多くの場合、運用上の計算に特化している。
MLモデルをクライアントサイドとサーバサイドモデルブロックに分割することで、クライアントサイドブロックのみがクライアントデバイスでトレーニングされる。
しかし、実際のアプリケーションには、クライアントの個人的なタスクに適したパーソナライズされたモデルが必要です。
そこで本研究では、パーソナライズ性能の向上を目的とした、パーソナライズされた階層分割型フェデレーション学習(PHSFL)アルゴリズムを提案する。
より具体的には、クライアント間の統計データ分布の重大さによらず、多くの特徴に類似した属性があるという事実から、私たちは、トレーニングフェーズ中に(ランダムに初期化)分類器を凍結させながら、フェデレーションラーニング(FL)モデルの身体部分のみを訓練する。
まず、モデル分割と階層モデル集約がグローバルモデルに与える影響を理解するために、広範囲な理論的解析を行う。
グローバルモデルがトレーニングされると、各クライアント分類器を微調整してパーソナライズされたモデルを取得する。
実験結果から,非学習型分類器を用いたグローバルトレーニングモデルは他の既存手法と非常によく似ているが,微調整型モデルではパーソナライズされた性能が大幅に向上したことが示唆された。
関連論文リスト
- Personalized Federated Learning via Feature Distribution Adaptation [3.410799378893257]
Federated Learning(FL)は、分散クライアントデータセット間の共通性を利用してグローバルモデルをトレーニングする分散学習フレームワークである。
パーソナライズド・フェデレーション・ラーニング(PFL)は、各クライアントに適した個々のモデルを学習することで、この問題に対処しようとしている。
我々は,グローバルな生成型分類器を局所的な特徴分布に適応させることで,パーソナライズされたモデルを効率的に生成するアルゴリズム,pFedFDAを提案する。
論文 参考訳(メタデータ) (2024-11-01T03:03:52Z) - Multi-Level Additive Modeling for Structured Non-IID Federated Learning [54.53672323071204]
我々は、異種クライアント間のより良い知識共有のために、マルチレベル付加モデル(MAM)と呼ばれるマルチレベル構造で編成されたモデルを訓練する。
フェデレートMAM(FeMAM)では、各クライアントは各レベル毎に少なくとも1つのモデルに割り当てられ、そのパーソナライズされた予測は、各レベルに割り当てられたモデルの出力を合計する。
実験により、FeMAMは既存のクラスタリングFLおよびパーソナライズされたFLメソッドを様々な非IID設定で超越していることが示された。
論文 参考訳(メタデータ) (2024-05-26T07:54:53Z) - Client-supervised Federated Learning: Towards One-model-for-all Personalization [28.574858341430858]
FLシステムにおける未確認/テストクライアント上のパーソナライズされたモデルと競合する性能を達成するために,単一の堅牢なグローバルモデルのみを学習する新しいフェデレーション学習フレームワークを提案する。
具体的には、新しいクライアント監督型フェデレートラーニング(FedCS)を設計し、クライアントの潜在表現に対するバイアスを解消し、グローバルモデルがクライアント固有の知識とクライアントに依存しない知識の両方を学習できるようにする。
論文 参考訳(メタデータ) (2024-03-28T15:29:19Z) - FAM: fast adaptive federated meta-learning [10.980548731600116]
単一グローバルモデルの協調学習のための高速適応型メタラーニング(FAM)フレームワークを提案する。
スケルトンネットワークは各クライアントで成長し、ローカルデータから追加のクライアント固有のパラメータを学習することでパーソナライズされたモデルをトレーニングする。
パーソナライズされたクライアントモデルは、ローカルにトレーニングされたモデルよりも優れ、FAMメカニズムの有効性を実証した。
論文 参考訳(メタデータ) (2023-08-26T22:54:45Z) - Visual Prompt Based Personalized Federated Learning [83.04104655903846]
pFedPTと呼ばれる画像分類タスクのための新しいPFLフレームワークを提案し、クライアントのローカルデータ配信情報を暗黙的に表現するためにパーソナライズされた視覚的プロンプトを利用する。
CIFAR10とCIFAR100データセットの実験では、pFedPTは様々な設定でいくつかの最先端(SOTA)PFLアルゴリズムより優れていた。
論文 参考訳(メタデータ) (2023-03-15T15:02:15Z) - SplitGP: Achieving Both Generalization and Personalization in Federated
Learning [31.105681433459285]
SplitGPは、リソース制約のあるクライアント間の効率的な推論のために、一般化とパーソナライズ機能をキャプチャする。
我々はSplitGPの収束挙動を解析的に解析し、全てのクライアントモデルが定常点に接近していることを明らかにする。
実験結果から, SplitGPは, 種々の分布外サンプルに対して, 推定時間, 試験精度において, 既存のベースラインよりも高い性能を示した。
論文 参考訳(メタデータ) (2022-12-16T08:37:24Z) - No One Left Behind: Inclusive Federated Learning over Heterogeneous
Devices [79.16481453598266]
この問題に対処するクライアント包摂的フェデレーション学習手法であるInclusiveFLを提案する。
InclusiveFLの中核となる考え方は、異なるサイズのモデルを異なる計算能力を持つクライアントに割り当てることである。
また,異なる大きさの複数の局所モデル間で知識を共有する効果的な手法を提案する。
論文 参考訳(メタデータ) (2022-02-16T13:03:27Z) - Toward Understanding the Influence of Individual Clients in Federated
Learning [52.07734799278535]
フェデレーションラーニングにより、クライアントはプライベートデータを中央サーバーに送信することなく、グローバルモデルを共同でトレーニングできます。
em-Influenceという新しい概念を定義し、パラメータに対するこの影響を定量化し、このメトリクスを推定する効果的な効率的なモデルを提案しました。
論文 参考訳(メタデータ) (2020-12-20T14:34:36Z) - Personalized Federated Learning with First Order Model Optimization [76.81546598985159]
そこで我々は,各クライアントが他のクライアントと連携して,クライアント固有の目的ごとのより強力なモデルを得る,フェデレーション学習の代替案を提案する。
基礎となるデータ分布やクライアントの類似性に関する知識を前提とせず、各クライアントが関心のある任意のターゲット分布を最適化できるようにします。
この手法は既存の代替品を上回り、ローカルデータ配信以外の転送のようなパーソナライズされたFLの新機能を可能にする。
論文 参考訳(メタデータ) (2020-12-15T19:30:29Z) - Federated Mutual Learning [65.46254760557073]
Federated Mutual Leaning (FML)は、クライアントが汎用モデルとパーソナライズされたモデルを独立してトレーニングすることを可能にする。
実験により、FMLは一般的なフェデレート学習環境よりも優れた性能が得られることが示された。
論文 参考訳(メタデータ) (2020-06-27T09:35:03Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。