論文の概要: UltraEdit: Instruction-based Fine-Grained Image Editing at Scale
- arxiv url: http://arxiv.org/abs/2407.05282v1
- Date: Sun, 7 Jul 2024 06:50:22 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-09 20:27:05.584845
- Title: UltraEdit: Instruction-based Fine-Grained Image Editing at Scale
- Title(参考訳): UltraEdit: インストラクションベースの微細画像編集
- Authors: Haozhe Zhao, Xiaojian Ma, Liang Chen, Shuzheng Si, Rujie Wu, Kaikai An, Peiyu Yu, Minjia Zhang, Qing Li, Baobao Chang,
- Abstract要約: 本稿では,大規模(約400万の編集サンプル)な画像編集のためのデータセットを自動生成するUltraEditを提案する。
私たちのキーとなるアイデアは、InstructPix2PixやMagicBrushといった既存の画像編集データセットの欠点に対処し、大規模で高品質な画像編集サンプルを作成するための体系的なアプローチを提供することです。
- 参考スコア(独自算出の注目度): 43.222251591410455
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This paper presents UltraEdit, a large-scale (approximately 4 million editing samples), automatically generated dataset for instruction-based image editing. Our key idea is to address the drawbacks in existing image editing datasets like InstructPix2Pix and MagicBrush, and provide a systematic approach to producing massive and high-quality image editing samples. UltraEdit offers several distinct advantages: 1) It features a broader range of editing instructions by leveraging the creativity of large language models (LLMs) alongside in-context editing examples from human raters; 2) Its data sources are based on real images, including photographs and artworks, which provide greater diversity and reduced bias compared to datasets solely generated by text-to-image models; 3) It also supports region-based editing, enhanced by high-quality, automatically produced region annotations. Our experiments show that canonical diffusion-based editing baselines trained on UltraEdit set new records on MagicBrush and Emu-Edit benchmarks. Our analysis further confirms the crucial role of real image anchors and region-based editing data. The dataset, code, and models can be found in https://ultra-editing.github.io.
- Abstract(参考訳): 本稿では,大規模(約400万の編集サンプル)のUltraEditについて,命令ベース画像編集のためのデータセットを自動生成する。
私たちのキーとなるアイデアは、InstructPix2PixやMagicBrushといった既存の画像編集データセットの欠点に対処し、大規模で高品質な画像編集サンプルを作成するための体系的なアプローチを提供することです。
UltraEditにはいくつかの異なる利点がある。
1)大規模言語モデル(LLM)の創造性を活用し、人間のラッカーのテキスト内編集例を活用し、幅広い編集指示を特徴とする。
2)データソースは,写真やアートワークを含む実際の画像に基づいており,テキスト・ツー・イメージ・モデルのみによって生成されたデータセットと比較して,多様性とバイアスの低減を実現している。
3) 高品質で自動生成される領域アノテーションによって強化された領域ベースの編集もサポートする。
実験の結果,UltraEdit でトレーニングされた標準拡散ベースラインは MagicBrush と Emu-Edit のベンチマークに新しいレコードをセットした。
分析により、実際の画像アンカーと領域ベースの編集データの重要性がさらに確認される。
データセット、コード、モデルはhttps://ultra-editing.github.ioで確認できる。
関連論文リスト
- AnyEdit: Mastering Unified High-Quality Image Editing for Any Idea [88.79769371584491]
我々は、総合的なマルチモーダル命令編集データセットであるAnyEditを提示する。
我々は,AnyEditコレクションの多様性と品質を,初期データ多様性,適応編集プロセス,自動編集結果の選択という3つの側面を通じて保証する。
3つのベンチマークデータセットの実験によると、AnyEditは拡散ベースの編集モデルのパフォーマンスを一貫して向上させる。
論文 参考訳(メタデータ) (2024-11-24T07:02:56Z) - ReEdit: Multimodal Exemplar-Based Image Editing with Diffusion Models [11.830273909934688]
最新のテキスト・ツー・イメージ(T2I)拡散モデルでは、高品質な画像を生成することで画像編集に革命をもたらした。
テキストと画像のモダリティの両方で編集をキャプチャする,モジュール的で効率的なエンドツーエンドフレームワークであるReEditを提案する。
以上の結果から,ReEditは定性的かつ定量的に現代的アプローチを一貫して上回っていることが示された。
論文 参考訳(メタデータ) (2024-11-06T15:19:24Z) - SEED-Data-Edit Technical Report: A Hybrid Dataset for Instructional Image Editing [53.00272278754867]
SEED-Data-Editは命令誘導画像編集のためのハイブリッドデータセットである。
自動パイプラインによって生成された高品質な編集データ。
インターネットから収集された実世界のシナリオデータ。
人間によって注釈付けされた高精度マルチターン編集データ。
論文 参考訳(メタデータ) (2024-05-07T04:55:47Z) - DiffEditor: Boosting Accuracy and Flexibility on Diffusion-based Image
Editing [66.43179841884098]
大規模テキスト・ツー・イメージ(T2I)拡散モデルは、ここ数年で画像生成に革命をもたらした。
既存の拡散型画像編集における2つの弱点を正すためにDiffEditorを提案する。
本手法は,様々な精細な画像編集タスクにおいて,最先端の性能を効率的に達成することができる。
論文 参考訳(メタデータ) (2024-02-04T18:50:29Z) - SpaceEdit: Learning a Unified Editing Space for Open-Domain Image
Editing [94.31103255204933]
オープンドメイン画像の色やトーン調整に着目したオープンドメイン画像編集のための統一モデルを提案する。
我々のモデルは、よりセマンティックで直感的で操作が容易な統合編集空間を学習する。
画像ペアを学習した編集空間の潜在コードに変換することで、下流編集タスクに我々のモデルを活用できることが示される。
論文 参考訳(メタデータ) (2021-11-30T23:53:32Z) - EditGAN: High-Precision Semantic Image Editing [120.49401527771067]
EditGANは高品質で高精度なセマンティック画像編集のための新しい手法である。
EditGANは前例のない細部と自由度で画像を操作可能であることを示す。
また、複数の編集を組み合わせることも簡単で、EditGANのトレーニングデータ以外の編集も可能になります。
論文 参考訳(メタデータ) (2021-11-04T22:36:33Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。