論文の概要: Ternary Spike-based Neuromorphic Signal Processing System
- arxiv url: http://arxiv.org/abs/2407.05310v1
- Date: Sun, 7 Jul 2024 09:32:19 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-09 20:17:13.062751
- Title: Ternary Spike-based Neuromorphic Signal Processing System
- Title(参考訳): 3次スパイクに基づくニューロモルフィック信号処理システム
- Authors: Shuai Wang, Dehao Zhang, Ammar Belatreche, Yichen Xiao, Hongyu Qing, Wenjie We, Malu Zhang, Yang Yang,
- Abstract要約: 我々は、スパイキングニューラルネットワーク(SNN)と量子化技術を利用して、エネルギー効率が高く軽量なニューロモルフィック信号処理システムを開発する。
我々のシステムは、しきい値適応符号化(TAE)法と量子第三次SNN(QT-SNN)の2つの主要な革新によって特徴づけられる。
提案方式の効率性と有効性は、エネルギー効率の高い信号処理のための有望な経路としての可能性を強調している。
- 参考スコア(独自算出の注目度): 12.32177207099149
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Deep Neural Networks (DNNs) have been successfully implemented across various signal processing fields, resulting in significant enhancements in performance. However, DNNs generally require substantial computational resources, leading to significant economic costs and posing challenges for their deployment on resource-constrained edge devices. In this study, we take advantage of spiking neural networks (SNNs) and quantization technologies to develop an energy-efficient and lightweight neuromorphic signal processing system. Our system is characterized by two principal innovations: a threshold-adaptive encoding (TAE) method and a quantized ternary SNN (QT-SNN). The TAE method can efficiently encode time-varying analog signals into sparse ternary spike trains, thereby reducing energy and memory demands for signal processing. QT-SNN, compatible with ternary spike trains from the TAE method, quantifies both membrane potentials and synaptic weights to reduce memory requirements while maintaining performance. Extensive experiments are conducted on two typical signal-processing tasks: speech and electroencephalogram recognition. The results demonstrate that our neuromorphic signal processing system achieves state-of-the-art (SOTA) performance with a 94% reduced memory requirement. Furthermore, through theoretical energy consumption analysis, our system shows 7.5x energy saving compared to other SNN works. The efficiency and efficacy of the proposed system highlight its potential as a promising avenue for energy-efficient signal processing.
- Abstract(参考訳): ディープニューラルネットワーク(DNN)は様々な信号処理フィールドに実装され、性能が大幅に向上した。
しかし、DNNは一般的にかなりの計算資源を必要とするため、経済的コストが大きくなり、リソースに制約のあるエッジデバイスへの展開が困難になる。
本研究では、スパイキングニューラルネットワーク(SNN)と量子化技術を利用して、エネルギー効率が高く軽量なニューロモルフィック信号処理システムを開発する。
本システムの特徴は、しきい値適応符号化(TAE)法と量子化三元SNN(QT-SNN)法である。
TAE法は、時間変化のアナログ信号をスパース3次スパイク列車に効率よく符号化することができ、信号処理におけるエネルギーとメモリの要求を低減できる。
QT-SNNは、TAE法による3次スパイク列車と互換性があり、膜電位とシナプス重量の両方を定量化し、性能を維持しながらメモリ要求を減少させる。
広汎な実験は、音声と脳波の認識という2つの典型的な信号処理タスクで行われている。
その結果,脳神経形信号処理システムは,94%のメモリ要求量でSOTA(State-of-the-art)性能を実現することがわかった。
さらに,理論的なエネルギー消費分析により,他のSNN作品と比較して7.5倍の省エネルギー性を示した。
提案方式の効率性と有効性は、エネルギー効率の高い信号処理のための有望な経路としての可能性を強調している。
関連論文リスト
- Neuromorphic Wireless Split Computing with Multi-Level Spikes [69.73249913506042]
ニューロモルフィックコンピューティングでは、スパイクニューラルネットワーク(SNN)が推論タスクを実行し、シーケンシャルデータを含むワークロードの大幅な効率向上を提供する。
ハードウェアとソフトウェアの最近の進歩は、スパイクニューロン間で交換された各スパイクに数ビットのペイロードを埋め込むことにより、推論精度をさらに高めることを示した。
本稿では,マルチレベルSNNを用いた無線ニューロモルフィック分割計算アーキテクチャについて検討する。
論文 参考訳(メタデータ) (2024-11-07T14:08:35Z) - Topology Optimization of Random Memristors for Input-Aware Dynamic SNN [44.38472635536787]
入力対応動的旋回型スパイクニューラルネットワーク(PRIME)のプルーニング最適化について紹介する。
信号表現の面では、PRIMEは脳固有のスパイキング機構をエミュレートするために、漏れやすい統合と発火のニューロンを使用する。
計算深度の動的調整にインスパイアされた再構成性のために、PRIMEは入力対応の動的早期停止ポリシーを採用している。
論文 参考訳(メタデータ) (2024-07-26T09:35:02Z) - Recent Advances in Scalable Energy-Efficient and Trustworthy Spiking
Neural networks: from Algorithms to Technology [11.479629320025673]
スパイキングニューラルネットワーク(SNN)は、幅広い信号処理アプリケーションのために、ディープニューラルネットワークの魅力的な代替品となっている。
我々は、低レイテンシとエネルギー効率のSNNを効率的に訓練し、拡張するためのアルゴリズムと最適化の進歩について述べる。
デプロイ可能なSNNシステム構築における研究の今後の可能性について論じる。
論文 参考訳(メタデータ) (2023-12-02T19:47:00Z) - DYNAP-SE2: a scalable multi-core dynamic neuromorphic asynchronous
spiking neural network processor [2.9175555050594975]
我々は、リアルタイムイベントベーススパイキングニューラルネットワーク(SNN)をプロトタイピングするための、脳にインスパイアされたプラットフォームを提案する。
提案システムは, 短期可塑性, NMDA ゲーティング, AMPA拡散, ホメオスタシス, スパイク周波数適応, コンダクタンス系デンドライトコンパートメント, スパイク伝達遅延などの動的および現実的なニューラル処理現象の直接エミュレーションを支援する。
異なる生物学的に可塑性のニューラルネットワークをエミュレートする柔軟性と、個体群と単一ニューロンの信号の両方をリアルタイムで監視する能力により、基礎研究とエッジコンピューティングの両方への応用のための複雑なニューラルネットワークモデルの開発と検証が可能になる。
論文 参考訳(メタデータ) (2023-10-01T03:48:16Z) - Energy-Efficient On-Board Radio Resource Management for Satellite
Communications via Neuromorphic Computing [59.40731173370976]
本研究は,エネルギー効率のよい脳誘発機械学習モデルのオンボード無線リソース管理への応用について検討する。
関連するワークロードでは、Loihi 2に実装されたスパイクニューラルネットワーク(SNN)の方が精度が高く、CNNベースのリファレンスプラットフォームと比較して消費電力が100ドル以上削減される。
論文 参考訳(メタデータ) (2023-08-22T03:13:57Z) - A Hybrid Neural Coding Approach for Pattern Recognition with Spiking
Neural Networks [53.31941519245432]
脳にインスパイアされたスパイクニューラルネットワーク(SNN)は、パターン認識タスクを解く上で有望な能力を示している。
これらのSNNは、情報表現に一様神経コーディングを利用する同質ニューロンに基づいている。
本研究では、SNNアーキテクチャは異種符号化方式を組み込むよう、均質に設計されるべきである、と論じる。
論文 参考訳(メタデータ) (2023-05-26T02:52:12Z) - The Hardware Impact of Quantization and Pruning for Weights in Spiking
Neural Networks [0.368986335765876]
パラメータの量子化とプルーニングは、モデルサイズを圧縮し、メモリフットプリントを削減し、低レイテンシ実行を容易にする。
本研究では,身近な身近なジェスチャー認識システムであるSNNに対して,孤立度,累積的に,そして同時にプルーニングと量子化の様々な組み合わせについて検討する。
本研究では,3次重みまで精度の低下に悩まされることなく,攻撃的パラメータ量子化に対処可能であることを示す。
論文 参考訳(メタデータ) (2023-02-08T16:25:20Z) - Signal Detection in MIMO Systems with Hardware Imperfections: Message
Passing on Neural Networks [101.59367762974371]
本稿では,Multi-Input-multiple-output (MIMO)通信システムにおける信号検出について検討する。
パイロット信号が限られているディープニューラルネットワーク(DNN)のトレーニングは困難であり、実用化を妨げている。
我々は、ユニタリ近似メッセージパッシング(UAMP)アルゴリズムを利用して、効率的なメッセージパッシングに基づくベイズ信号検出器を設計する。
論文 参考訳(メタデータ) (2022-10-08T04:32:58Z) - A Resource-efficient Spiking Neural Network Accelerator Supporting
Emerging Neural Encoding [6.047137174639418]
スパイキングニューラルネットワーク(SNN)は、その低消費電力乗算自由コンピューティングにより、最近勢いを増している。
SNNは、大規模なモデルのための人工知能ニューラルネットワーク(ANN)と同様の精度に達するために、非常に長いスパイク列車(1000台まで)を必要とする。
ニューラルエンコーディングでSNNを効率的にサポートできる新しいハードウェアアーキテクチャを提案する。
論文 参考訳(メタデータ) (2022-06-06T10:56:25Z) - Hybrid SNN-ANN: Energy-Efficient Classification and Object Detection for
Event-Based Vision [64.71260357476602]
イベントベースの視覚センサは、画像フレームではなく、イベントストリームの局所的な画素単位の明るさ変化を符号化する。
イベントベースセンサーによる物体認識の最近の進歩は、ディープニューラルネットワークの変換によるものである。
本稿では、イベントベースのパターン認識とオブジェクト検出のためのディープニューラルネットワークのエンドツーエンドトレーニングのためのハイブリッドアーキテクチャを提案する。
論文 参考訳(メタデータ) (2021-12-06T23:45:58Z) - FSpiNN: An Optimization Framework for Memory- and Energy-Efficient
Spiking Neural Networks [14.916996986290902]
スパイキングニューラルネットワーク(SNN)は、スパイクタイピング依存の可塑性(STDP)ルールのために教師なし学習機能を提供する。
しかし、最先端のSNNは高い精度を達成するために大きなメモリフットプリントを必要とする。
トレーニングおよび推論処理のためのメモリ効率とエネルギー効率のよいSNNを得るための最適化フレームワークFSpiNNを提案する。
論文 参考訳(メタデータ) (2020-07-17T09:40:26Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。