論文の概要: KAE: A Property-based Method for Knowledge Graph Alignment and Extension
- arxiv url: http://arxiv.org/abs/2407.05320v1
- Date: Sun, 7 Jul 2024 10:17:03 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-09 20:17:13.042471
- Title: KAE: A Property-based Method for Knowledge Graph Alignment and Extension
- Title(参考訳): KAE:知識グラフアライメントと拡張のためのプロパティベースの手法
- Authors: Daqian Shi, Xiaoyue Li, Fausto Giunchiglia,
- Abstract要約: 本稿では、新しいプロパティベースのアライメントアプローチを含む知識グラフ(KG)拡張のための機械学習ベースのフレームワークを提案する。
主な直観は、etypeを意図的に定義する性質であり、この定義はetypeを名付けるために使われる特定のラベルとは独立である。
実験の結果,KGアライメント手法の有効性と,提案したKG拡張フレームワークの優位性を示した。
- 参考スコア(独自算出の注目度): 10.95094280530977
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: A common solution to the semantic heterogeneity problem is to perform knowledge graph (KG) extension exploiting the information encoded in one or more candidate KGs, where the alignment between the reference KG and candidate KGs is considered the critical procedure. However, existing KG alignment methods mainly rely on entity type (etype) label matching as a prerequisite, which is poorly performing in practice or not applicable in some cases. In this paper, we design a machine learning-based framework for KG extension, including an alternative novel property-based alignment approach that allows aligning etypes on the basis of the properties used to define them. The main intuition is that it is properties that intentionally define the etype, and this definition is independent of the specific label used to name an etype, and of the specific hierarchical schema of KGs. Compared with the state-of-the-art, the experimental results show the validity of the KG alignment approach and the superiority of the proposed KG extension framework, both quantitatively and qualitatively.
- Abstract(参考訳): 意味的不均一性問題に対する一般的な解決策は、1つ以上の候補KGに符号化された情報を活用した知識グラフ(KG)拡張を行うことである。
しかし、既存のKGアライメント手法は、主にエンティティタイプ(etype)ラベルマッチングを前提条件としており、実際はパフォーマンスが悪く、場合によっては適用できない。
本稿では、KG拡張のための機械学習ベースのフレームワークを設計し、それを定義するために使用するプロパティに基づいて、etypeをアライメントできる新しいプロパティベースのアライメントアプローチを含む。
主な直観は、etype を意図的に定義する性質であり、この定義は、etype を名付けるために使われる特定のラベルと、KGs の特定の階層スキーマとは独立である。
実験結果は,最先端技術と比較して,KGアライメントアプローチの有効性と提案したKG拡張フレームワークの優位性を示す。
関連論文リスト
- KG-FIT: Knowledge Graph Fine-Tuning Upon Open-World Knowledge [63.19837262782962]
知識グラフ埋め込み(KGE)技術は、知識グラフ内の実体と関係のコンパクトな表現を学習するために重要である。
本研究では、エンティティクラスタのセマンティックコヒーレントな階層構造を構築するKG-FITを紹介する。
ベンチマークデータセットFB15K-237、YAGO3-10、PrimeKGの実験は、最先端の訓練済み言語モデルに基づく手法よりもKG-FITの方が優れていることを示した。
論文 参考訳(メタデータ) (2024-05-26T03:04:26Z) - Domain Adaptation for Large-Vocabulary Object Detectors [103.16365373806829]
本稿では,CLIPにおける暗黙的知識グラフ(KG)を利用した知識グラフ蒸留手法であるKGDについて述べる。
複数の広く採用されている検出ベンチマークに対する実験により、KGDは最先端技術よりも大きなマージンで一貫して優れていることが示された。
論文 参考訳(メタデータ) (2024-01-13T03:51:18Z) - KMF: Knowledge-Aware Multi-Faceted Representation Learning for Zero-Shot
Node Classification [75.95647590619929]
Zero-Shot Node Classification (ZNC)は、グラフデータ分析において、新しく重要なタスクである。
ラベルセマンティクスの豊かさを向上する知識認識型多面的フレームワーク(KMF)を提案する。
ノード情報集約によるプロトタイプドリフトの問題を軽減するために,新しい幾何学的制約を開発した。
論文 参考訳(メタデータ) (2023-08-15T02:38:08Z) - Recognizing Entity Types via Properties [5.622134113488239]
プロパティ定義に使用するプロパティに基づいて,etypeを認識可能なプロパティベースのアプローチを導入する。
主なコントリビューションは、etypeとエンティティ間の類似度を測定するプロパティベースのメトリクスセットと、提案した類似度メトリクスを利用する機械学習アルゴリズムである。
論文 参考訳(メタデータ) (2023-04-16T22:42:30Z) - Exploiting Global Semantic Similarities in Knowledge Graphs by
Relational Prototype Entities [55.952077365016066]
実証的な観察では、頭と尾のエンティティが同じ関係で結ばれている場合、しばしば同様の意味的属性を共有する。
我々は、textittextbfrelational prototype entityと呼ばれる仮想ノードのセットを導入する新しいアプローチを提案する。
エンティティの埋め込みを、関連するプロトタイプの埋め込みに近づけることで、私たちのアプローチは、エンティティのグローバルな意味的類似性を効果的に促進できる。
論文 参考訳(メタデータ) (2022-06-16T09:25:33Z) - Joint Semantics and Data-Driven Path Representation for Knowledge Graph
Inference [60.048447849653876]
我々は,KG埋め込みの枠組みにおける説明可能性と一般化のバランスをとる,新しい共同意味論とデータ駆動経路表現を提案する。
提案手法はリンク予測と経路問合せ応答という2つのタスクのクラスで評価される。
論文 参考訳(メタデータ) (2020-10-06T10:24:45Z) - Connecting Embeddings for Knowledge Graph Entity Typing [22.617375045752084]
知識グラフ(KG)エンティティタイピングは、KGに欠落する可能性のあるエンティティタイプのインスタンスを推測することを目的としている。
我々は,既存のエンティティ型アサーションから局所型付け知識とKGからのグローバル三重知識を併用して学習した,KGエンティティ型付けのための新しいアプローチを提案する。
論文 参考訳(メタデータ) (2020-07-21T15:00:01Z) - Relational Learning Analysis of Social Politics using Knowledge Graph
Embedding [11.978556412301975]
本稿では,新しい信頼性ドメインベースのKG埋め込みフレームワークを提案する。
ヘテロジニアスリソースから得られたデータの融合を、ドメインによって表現された正式なKG表現にキャプチャする。
このフレームワークは、データ品質と信頼性を保証するための信頼性モジュールも具体化している。
論文 参考訳(メタデータ) (2020-06-02T14:10:28Z) - Entity Type Prediction in Knowledge Graphs using Embeddings [2.7528170226206443]
オープンナレッジグラフ(DBpedia、Wikidata、YAGOなど)は、データマイニングと情報検索の分野における多様なアプリケーションのバックボーンとして認識されている。
これらのKGのほとんどは、スナップショットからの自動情報抽出またはユーザーが提供する情報蓄積によって作成されるか、ウィキペディアを用いて作成される。
これらのKGの型情報は、しばしばうるさい、不完全、不正確である。
KG埋め込みを用いたエンティティタイピングのためのマルチラベル分類手法を提案する。
論文 参考訳(メタデータ) (2020-04-28T17:57:08Z) - On the Role of Conceptualization in Commonsense Knowledge Graph
Construction [59.39512925793171]
アトミックやASERのような常識知識グラフ(CKG)は、従来のKGと大きく異なる。
本稿では, CKG の概念化手法を紹介し, テキストに記述されたエンティティを特定の概念のインスタンスとみなすか, あるいはその逆を例に紹介する。
提案手法は, 可塑性三重項を効果的に同定し, 新たなノードの3重項と, 多様性と新規性の両端項によってKGを拡張できる。
論文 参考訳(メタデータ) (2020-03-06T14:35:20Z) - End-to-End Entity Linking and Disambiguation leveraging Word and
Knowledge Graph Embeddings [20.4826750211045]
我々は,KGと単語埋め込みを併用した最初のエンドツーエンドニューラルネットワークアプローチを提案し,単純な質問の結合関係と実体分類を行う。
実験により,提案手法が最先端のエンティティリンクに匹敵する性能を実現することを示す。
論文 参考訳(メタデータ) (2020-02-25T19:07:54Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。