論文の概要: Fast Proxy Experiment Design for Causal Effect Identification
- arxiv url: http://arxiv.org/abs/2407.05330v1
- Date: Sun, 7 Jul 2024 11:09:38 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-09 20:07:19.778945
- Title: Fast Proxy Experiment Design for Causal Effect Identification
- Title(参考訳): 因果効果同定のための高速プロキシ実験設計
- Authors: Sepehr Elahi, Sina Akbari, Jalal Etesami, Negar Kiyavash, Patrick Thiran,
- Abstract要約: 因果効果を推定する2つのアプローチは、観察的および実験的(ランダム化)な研究である。
対象変数の直接実験は、コストがかかりすぎるか、実行不可能である可能性がある。
プロキシ実験は、メインターゲットと比較して、介入するコストの低い変数に対して実施される。
- 参考スコア(独自算出の注目度): 27.885243535456237
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Identifying causal effects is a key problem of interest across many disciplines. The two long-standing approaches to estimate causal effects are observational and experimental (randomized) studies. Observational studies can suffer from unmeasured confounding, which may render the causal effects unidentifiable. On the other hand, direct experiments on the target variable may be too costly or even infeasible to conduct. A middle ground between these two approaches is to estimate the causal effect of interest through proxy experiments, which are conducted on variables with a lower cost to intervene on compared to the main target. Akbari et al. [2022] studied this setting and demonstrated that the problem of designing the optimal (minimum-cost) experiment for causal effect identification is NP-complete and provided a naive algorithm that may require solving exponentially many NP-hard problems as a sub-routine in the worst case. In this work, we provide a few reformulations of the problem that allow for designing significantly more efficient algorithms to solve it as witnessed by our extensive simulations. Additionally, we study the closely-related problem of designing experiments that enable us to identify a given effect through valid adjustments sets.
- Abstract(参考訳): 因果効果の同定は多くの分野において重要な問題である。
因果効果を推定する2つの長年のアプローチは、観察的および実験的(ランダム化)な研究である。
観測的研究は、原因を特定できない原因となる未測定の共起に苦しむことがある。
一方、対象変数の直接実験はコストがかかりすぎるか、実行不可能である可能性がある。
この2つのアプローチの中間点は、主ターゲットよりも低いコストで介入する変数に対して行われるプロキシ実験を通じて、興味の因果効果を推定することである。
Akbari et al [2022] は、この設定を研究し、因果効果の同定に最適な(最小コスト)実験を設計する問題はNP完全であり、最悪の場合において、指数関数的に多くのNPハード問題をサブルーチンとして解くことを必要とするナイーブなアルゴリズムを提供した。
本研究では, より効率的なアルゴリズムを設計し, 広範囲なシミュレーションで確認したように, この問題のいくつかを再検討する。
さらに、有効な調整セットによって与えられた効果を識別できる設計実験の密接な関連性について検討する。
関連論文リスト
- The Blessings of Multiple Treatments and Outcomes in Treatment Effect
Estimation [53.81860494566915]
既存の研究では、プロキシ変数や複数の処理を利用してバイアスを補正している。
多くの実世界のシナリオでは、複数の結果に対する影響を研究することにより大きな関心がある。
この設定に関わる複数の結果の並列研究は、因果同定において互いに助け合うことが示されている。
論文 参考訳(メタデータ) (2023-09-29T14:33:48Z) - Benchmarking Bayesian Causal Discovery Methods for Downstream Treatment
Effect Estimation [137.3520153445413]
下流推論に重点を置く因果発見手法の評価において,顕著なギャップが存在する。
我々は,GFlowNetsに基づく新たな手法を含む,確立された7つの基本因果探索手法を評価する。
研究の結果,研究対象のアルゴリズムのいくつかは,多種多様なATEモードを効果的に捉えることができることがわかった。
論文 参考訳(メタデータ) (2023-07-11T02:58:10Z) - A Causal Framework for Decomposing Spurious Variations [68.12191782657437]
我々はマルコフモデルとセミマルコフモデルの急激な変分を分解するツールを開発する。
突発効果の非パラメトリック分解を可能にする最初の結果を証明する。
説明可能なAIや公平なAIから、疫学や医学における疑問まで、いくつかの応用がある。
論文 参考訳(メタデータ) (2023-06-08T09:40:28Z) - Disentangling Causal Effects from Sets of Interventions in the Presence
of Unobserved Confounders [19.32843499761667]
我々は,観察データと介入セットの両方から,単一介入の効果を学習することを目的とする。
異なるレシスタンスからデータをプールすることで因果モデルパラメータを学習するアルゴリズムを提案する。
本手法の有効性は,合成データと実世界のデータの両方で実証的に実証された。
論文 参考訳(メタデータ) (2022-10-11T13:42:36Z) - Valid Inference After Causal Discovery [73.87055989355737]
我々は、因果関係発見後の推論に有効なツールを開発する。
因果発見とその後の推論アルゴリズムの組み合わせは,高度に膨らんだ誤発見率をもたらすことを示す。
論文 参考訳(メタデータ) (2022-08-11T17:40:45Z) - Interpretable Deep Causal Learning for Moderation Effects [0.0]
本稿では、因果機械学習モデルにおける解釈可能性と目標正規化の問題に対処する。
本稿では,個別の処理効果を推定するための新しい深層対実学習アーキテクチャを提案する。
論文 参考訳(メタデータ) (2022-06-21T11:21:09Z) - Active Bayesian Causal Inference [72.70593653185078]
因果発見と推論を統合するための完全ベイズ能動学習フレームワークであるアクティブベイズ因果推論(ABCI)を提案する。
ABCIは因果関係のモデルと関心のクエリを共同で推論する。
我々のアプローチは、完全な因果グラフの学習のみに焦点を当てた、いくつかのベースラインよりも、よりデータ効率が高いことを示す。
論文 参考訳(メタデータ) (2022-06-04T22:38:57Z) - Experimental Design for Causal Effect Identification [31.23071073904698]
必要な効果を識別するために,最小限のコストで介入の収集を設計する問題を考察する。
まず、この問題がNPハードであることを証明し、次に最適な解や対数近似を求めるアルゴリズムを提案する。
これらのアルゴリズムは準最適解に反する可能性があるが、我々のシミュレーションはランダムグラフに対する小さな後悔を達成していることを示している。
論文 参考訳(メタデータ) (2022-05-04T13:19:04Z) - SurvITE: Learning Heterogeneous Treatment Effects from Time-to-Event
Data [83.50281440043241]
時系列データから不均一な処理効果を推定する問題について検討する。
本稿では,バランス表現に基づく治療特異的ハザード推定のための新しいディープラーニング手法を提案する。
論文 参考訳(メタデータ) (2021-10-26T20:13:17Z) - Causal Effect Estimation using Variational Information Bottleneck [19.6760527269791]
因果推論とは、介入が適用されるときの因果関係における因果効果を推定することである。
変分情報ボトルネック(CEVIB)を用いて因果効果を推定する手法を提案する。
論文 参考訳(メタデータ) (2021-10-26T13:46:12Z) - Active Invariant Causal Prediction: Experiment Selection through
Stability [4.56877715768796]
本研究では、不変因果予測(ICP)に基づく新しい能動学習(実験選択)フレームワーク(A-ICP)を提案する。
一般的な構造因果モデルでは、いわゆる安定集合に対する介入の効果を特徴づける。
本稿では,A-ICPの介入選択ポリシーを提案し,因果グラフにおける応答変数の直接原因を素早く明らかにする。
実験により, 人口および有限登録実験において提案した政策の有効性を実証的に分析した。
論文 参考訳(メタデータ) (2020-06-10T07:07:27Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。