論文の概要: Multimodal Prompt Learning with Missing Modalities for Sentiment Analysis and Emotion Recognition
- arxiv url: http://arxiv.org/abs/2407.05374v1
- Date: Sun, 7 Jul 2024 13:55:56 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-09 19:57:34.664975
- Title: Multimodal Prompt Learning with Missing Modalities for Sentiment Analysis and Emotion Recognition
- Title(参考訳): 感覚分析と感情認識のためのモダリティを欠いたマルチモーダル・プロンプト学習
- Authors: Zirun Guo, Tao Jin, Zhou Zhao,
- Abstract要約: 本稿では,欠落したモダリティの問題に対処するために,即時学習を用いた新しいマルチモーダルトランスフォーマーフレームワークを提案する。
提案手法では,生成的プロンプト,欠信号プロンプト,欠信号プロンプトの3種類のプロンプトを導入している。
迅速な学習を通じて、トレーニング可能なパラメータの数を大幅に削減する。
- 参考スコア(独自算出の注目度): 52.522244807811894
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The development of multimodal models has significantly advanced multimodal sentiment analysis and emotion recognition. However, in real-world applications, the presence of various missing modality cases often leads to a degradation in the model's performance. In this work, we propose a novel multimodal Transformer framework using prompt learning to address the issue of missing modalities. Our method introduces three types of prompts: generative prompts, missing-signal prompts, and missing-type prompts. These prompts enable the generation of missing modality features and facilitate the learning of intra- and inter-modality information. Through prompt learning, we achieve a substantial reduction in the number of trainable parameters. Our proposed method outperforms other methods significantly across all evaluation metrics. Extensive experiments and ablation studies are conducted to demonstrate the effectiveness and robustness of our method, showcasing its ability to effectively handle missing modalities.
- Abstract(参考訳): マルチモーダルモデルの開発は、多モーダル感情分析と感情認識を著しく進歩させた。
しかし、現実世界の応用では、様々なモダリティが欠如しているため、しばしばモデルの性能が低下する。
本研究では,欠落したモダリティの問題に対処するために,即時学習を用いた新しいマルチモーダルトランスフォーマフレームワークを提案する。
提案手法では,生成的プロンプト,欠信号プロンプト,欠信号プロンプトの3種類のプロンプトを導入している。
これらのプロンプトは、欠落したモダリティ特徴の生成を可能にし、モダリティ内およびモダリティ間情報の学習を容易にする。
迅速な学習を通じて、トレーニング可能なパラメータの数を大幅に削減する。
提案手法は,すべての評価指標において,他の手法よりも優れていた。
提案手法の有効性とロバスト性を実証するために, 大規模な実験およびアブレーション実験を行い, 欠落したモダリティを効果的に扱えることを示す。
関連論文リスト
- Leveraging Retrieval Augment Approach for Multimodal Emotion Recognition Under Missing Modalities [16.77191718894291]
我々は,Multimodal Emotion Recognition(RAMER)の欠如に対する検索機能強化の新たな枠組みを提案する。
我々のフレームワークは、欠落したモダリティMERタスクにおける最先端のアプローチよりも優れている。
論文 参考訳(メタデータ) (2024-09-19T02:31:12Z) - MuAP: Multi-step Adaptive Prompt Learning for Vision-Language Model with Missing Modality [11.03329286331929]
モダリティが不完全である場合の学習行動について,本研究は初めて包括的調査を行う。
本稿では,マルチモーダルなプロンプトを生成し,マルチステップなプロンプトチューニングを実現するための,新しい多段階適応型プロンプト学習フレームワークを提案する。
論文 参考訳(メタデータ) (2024-09-07T03:33:46Z) - Modality Invariant Multimodal Learning to Handle Missing Modalities: A Single-Branch Approach [29.428067329993173]
そこで本研究では,モダリティの欠落の影響を受けにくい多モーダル学習手法を提案する。
性能を最大化するためにモダリティ間表現を学ぶために、複数のモダリティにまたがる重みを共有するシングルブランチネットワークで構成されている。
提案手法は,すべてのモダリティが存在する場合や,既存の最先端手法と比較して,トレーニングやテスト中にモダリティが欠落する場合に優れた性能が得られる。
論文 参考訳(メタデータ) (2024-08-14T10:32:16Z) - Can Text-to-image Model Assist Multi-modal Learning for Visual
Recognition with Visual Modality Missing? [37.73329106465031]
視覚的モダリティの欠如に対するデータ効率の向上とロバスト性をモデル化するためのテキスト・ツー・イメージ・フレームワークであるGTI-MMを提案する。
以上の結果から, 合成画像はトレーニングにおける視覚的データの欠如によるトレーニングデータの効率向上と, トレーニングやテストに関わる視覚的データの欠如によるモデルロバスト性向上に寄与することが示唆された。
論文 参考訳(メタデータ) (2024-02-14T09:21:00Z) - Exploring Missing Modality in Multimodal Egocentric Datasets [89.76463983679058]
モダリティが欠如している場合でも,MMT(Missing Modality Token)という新しい概念を導入してパフォーマンスを維持する。
テストセットの半分がモダル不完全である場合、元の$sim 30%$ dropから$sim 10%$に減らします。
論文 参考訳(メタデータ) (2024-01-21T11:55:42Z) - Unified Multi-modal Unsupervised Representation Learning for
Skeleton-based Action Understanding [62.70450216120704]
教師なしの事前訓練は骨格に基づく行動理解において大きな成功を収めた。
我々はUmURLと呼ばれる統一マルチモーダル非教師なし表現学習フレームワークを提案する。
UmURLは効率的な早期融合戦略を利用して、マルチモーダル機能を単一ストリームで共同でエンコードする。
論文 参考訳(メタデータ) (2023-11-06T13:56:57Z) - Mastering Robot Manipulation with Multimodal Prompts through Pretraining and Multi-task Fine-tuning [49.92517970237088]
我々はマルチモーダルなプロンプトを理解するためにロボットを訓練する問題に取り組む。
このようなタスクは、視覚と言語信号の相互接続と相補性を理解するロボットの能力にとって大きな課題となる。
マルチモーダルプロンプトを用いてロボット操作を行うためのポリシーを学習する効果的なフレームワークを提案する。
論文 参考訳(メタデータ) (2023-10-14T22:24:58Z) - Learning Unseen Modality Interaction [54.23533023883659]
マルチモーダル学習は、すべてのモダリティの組み合わせが訓練中に利用でき、クロスモーダル対応を学ぶことを前提としている。
我々は、目に見えないモダリティ相互作用の問題を提起し、第1の解を導入する。
異なるモジュラリティの多次元的特徴を、豊富な情報を保存した共通空間に投影するモジュールを利用する。
論文 参考訳(メタデータ) (2023-06-22T10:53:10Z) - Multimodal Prompting with Missing Modalities for Visual Recognition [40.961534960897595]
視覚認識のためのマルチモーダル学習における課題として,1)実世界の状況下でのトレーニングやテストにおいてモダリティの欠如が発生した場合,2)重変圧器モデルの微調整に計算資源が利用できない場合,の2つを挙げる。
具体的には、モデル全体のトレーニングに比べて学習可能なパラメータが1%未満であるにもかかわらず、一般的なモダリティケースを扱うために、モダリティ許容プロンプトをマルチモーダルトランスフォーマーにプラグインすることができる。
論文 参考訳(メタデータ) (2023-03-06T18:54:46Z) - MEmoBERT: Pre-training Model with Prompt-based Learning for Multimodal
Emotion Recognition [118.73025093045652]
マルチモーダル感情認識のための事前学習モデル textbfMEmoBERT を提案する。
従来の「訓練前、微妙な」パラダイムとは異なり、下流の感情分類タスクをマスク付きテキスト予測として再構成するプロンプトベースの手法を提案する。
提案するMEMOBERTは感情認識性能を大幅に向上させる。
論文 参考訳(メタデータ) (2021-10-27T09:57:00Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。