A Fair Post-Processing Method based on the MADD Metric for Predictive Student Models
- URL: http://arxiv.org/abs/2407.05398v1
- Date: Sun, 7 Jul 2024 14:53:41 GMT
- Title: A Fair Post-Processing Method based on the MADD Metric for Predictive Student Models
- Authors: Mélina Verger, Chunyang Fan, Sébastien Lallé, François Bouchet, Vanda Luengo,
- Abstract summary: A new metric has been developed to evaluate algorithmic fairness in predictive student models.
In this paper, we develop a post-processing method that aims at improving the fairness while preserving the accuracy of relevant predictive models' results.
We experiment with our approach on the task of predicting student success in an online course, using both simulated and real-world educational data.
- Score: 1.055551340663609
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Predictive student models are increasingly used in learning environments. However, due to the rising social impact of their usage, it is now all the more important for these models to be both sufficiently accurate and fair in their predictions. To evaluate algorithmic fairness, a new metric has been developed in education, namely the Model Absolute Density Distance (MADD). This metric enables us to measure how different a predictive model behaves regarding two groups of students, in order to quantify its algorithmic unfairness. In this paper, we thus develop a post-processing method based on this metric, that aims at improving the fairness while preserving the accuracy of relevant predictive models' results. We experiment with our approach on the task of predicting student success in an online course, using both simulated and real-world educational data, and obtain successful results. Our source code and data are in open access at https://github.com/melinaverger/MADD .
Related papers
- What Do Learning Dynamics Reveal About Generalization in LLM Reasoning? [83.83230167222852]
We find that a model's generalization behavior can be effectively characterized by a training metric we call pre-memorization train accuracy.
By connecting a model's learning behavior to its generalization, pre-memorization train accuracy can guide targeted improvements to training strategies.
arXiv Detail & Related papers (2024-11-12T09:52:40Z) - Attribute-to-Delete: Machine Unlearning via Datamodel Matching [65.13151619119782]
Machine unlearning -- efficiently removing a small "forget set" training data on a pre-divertrained machine learning model -- has recently attracted interest.
Recent research shows that machine unlearning techniques do not hold up in such a challenging setting.
arXiv Detail & Related papers (2024-10-30T17:20:10Z) - Towards An Online Incremental Approach to Predict Students Performance [0.8287206589886879]
We propose a memory-based online incremental learning approach for updating an online classifier.
Our approach achieves a notable improvement in model accuracy, with an enhancement of nearly 10% compared to the current state-of-the-art.
arXiv Detail & Related papers (2024-05-03T17:13:26Z) - Data Mixing Laws: Optimizing Data Mixtures by Predicting Language Modeling Performance [55.872926690722714]
We study the predictability of model performance regarding the mixture proportions in function forms.
We propose nested use of the scaling laws of training steps, model sizes, and our data mixing law.
Our method effectively optimize the training mixture of a 1B model trained for 100B tokens in RedPajama.
arXiv Detail & Related papers (2024-03-25T17:14:00Z) - Data vs. Model Machine Learning Fairness Testing: An Empirical Study [23.535630175567146]
We take the first steps towards evaluating a more holistic approach by testing for fairness both before and after model training.
We evaluate the effectiveness of the proposed approach using an empirical analysis of the relationship between model dependent and independent fairness metrics.
Our results indicate that testing for fairness prior to training can be a cheap'' and effective means of catching a biased data collection process early.
arXiv Detail & Related papers (2024-01-15T14:14:16Z) - Is Your Model "MADD"? A Novel Metric to Evaluate Algorithmic Fairness
for Predictive Student Models [0.0]
We propose a novel metric, the Model Absolute Density Distance (MADD), to analyze models' discriminatory behaviors.
We evaluate our approach on the common task of predicting student success in online courses, using several common predictive classification models.
arXiv Detail & Related papers (2023-05-24T16:55:49Z) - A Predictive Model using Machine Learning Algorithm in Identifying
Students Probability on Passing Semestral Course [0.0]
This study employs classification for data mining techniques, and decision tree for algorithm.
With the utilization of the newly discovered predictive model, the prediction of students probabilities to pass the current courses they take gives 0.7619 accuracy, 0.8333 precision, 0.8823 recall, and 0.8571 f1 score.
arXiv Detail & Related papers (2023-04-12T01:57:08Z) - Can Active Learning Preemptively Mitigate Fairness Issues? [66.84854430781097]
dataset bias is one of the prevailing causes of unfairness in machine learning.
We study whether models trained with uncertainty-based ALs are fairer in their decisions with respect to a protected class.
We also explore the interaction of algorithmic fairness methods such as gradient reversal (GRAD) and BALD.
arXiv Detail & Related papers (2021-04-14T14:20:22Z) - Models, Pixels, and Rewards: Evaluating Design Trade-offs in Visual
Model-Based Reinforcement Learning [109.74041512359476]
We study a number of design decisions for the predictive model in visual MBRL algorithms.
We find that a range of design decisions that are often considered crucial, such as the use of latent spaces, have little effect on task performance.
We show how this phenomenon is related to exploration and how some of the lower-scoring models on standard benchmarks will perform the same as the best-performing models when trained on the same training data.
arXiv Detail & Related papers (2020-12-08T18:03:21Z) - Meta-Learned Confidence for Few-shot Learning [60.6086305523402]
A popular transductive inference technique for few-shot metric-based approaches, is to update the prototype of each class with the mean of the most confident query examples.
We propose to meta-learn the confidence for each query sample, to assign optimal weights to unlabeled queries.
We validate our few-shot learning model with meta-learned confidence on four benchmark datasets.
arXiv Detail & Related papers (2020-02-27T10:22:17Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.