Data vs. Model Machine Learning Fairness Testing: An Empirical Study
- URL: http://arxiv.org/abs/2401.07697v1
- Date: Mon, 15 Jan 2024 14:14:16 GMT
- Title: Data vs. Model Machine Learning Fairness Testing: An Empirical Study
- Authors: Arumoy Shome and Luis Cruz and Arie van Deursen
- Abstract summary: We take the first steps towards evaluating a more holistic approach by testing for fairness both before and after model training.
We evaluate the effectiveness of the proposed approach using an empirical analysis of the relationship between model dependent and independent fairness metrics.
Our results indicate that testing for fairness prior to training can be a cheap'' and effective means of catching a biased data collection process early.
- Score: 23.535630175567146
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Although several fairness definitions and bias mitigation techniques exist in
the literature, all existing solutions evaluate fairness of Machine Learning
(ML) systems after the training stage. In this paper, we take the first steps
towards evaluating a more holistic approach by testing for fairness both before
and after model training. We evaluate the effectiveness of the proposed
approach and position it within the ML development lifecycle, using an
empirical analysis of the relationship between model dependent and independent
fairness metrics. The study uses 2 fairness metrics, 4 ML algorithms, 5
real-world datasets and 1600 fairness evaluation cycles. We find a linear
relationship between data and model fairness metrics when the distribution and
the size of the training data changes. Our results indicate that testing for
fairness prior to training can be a ``cheap'' and effective means of catching a
biased data collection process early; detecting data drifts in production
systems and minimising execution of full training cycles thus reducing
development time and costs.
Related papers
- Distilled Datamodel with Reverse Gradient Matching [74.75248610868685]
We introduce an efficient framework for assessing data impact, comprising offline training and online evaluation stages.
Our proposed method achieves comparable model behavior evaluation while significantly speeding up the process compared to the direct retraining method.
arXiv Detail & Related papers (2024-04-22T09:16:14Z) - Fairness-Aware Data Valuation for Supervised Learning [4.874780144224057]
We propose Fairness-Aware Data vauatiOn (FADO) to incorporate fairness concerns into a series of ML-related tasks.
We show how FADO can be applied as the basis for unfairness mitigation pre-processing techniques.
Our methods achieve promising results -- up to a 40 p.p. improvement in fairness at a less than 1 p.p. loss in performance compared to a baseline.
arXiv Detail & Related papers (2023-03-29T18:51:13Z) - Towards Algorithmic Fairness by means of Instance-level Data Re-weighting based on Shapley Values [6.752538702870792]
We propose FairShap, a novel instance-level data re-weighting method for fair algorithmic decision-making.
We empirically validate FairShap on several state-of-the-art datasets of different nature.
We show how it yields fairer models with similar levels of accuracy than the baselines.
arXiv Detail & Related papers (2023-03-03T13:53:36Z) - Provable Fairness for Neural Network Models using Formal Verification [10.90121002896312]
We propose techniques to emphprove fairness using recently developed formal methods that verify properties of neural network models.
We show that through proper training, we can reduce unfairness by an average of 65.4% at a cost of less than 1% in AUC score.
arXiv Detail & Related papers (2022-12-16T16:54:37Z) - FORML: Learning to Reweight Data for Fairness [2.105564340986074]
We introduce Fairness Optimized Reweighting via Meta-Learning (FORML)
FORML balances fairness constraints and accuracy by jointly optimizing training sample weights and a neural network's parameters.
We show that FORML improves equality of opportunity fairness criteria over existing state-of-the-art reweighting methods by approximately 1% on image classification tasks and by approximately 5% on a face prediction task.
arXiv Detail & Related papers (2022-02-03T17:36:07Z) - FairIF: Boosting Fairness in Deep Learning via Influence Functions with
Validation Set Sensitive Attributes [51.02407217197623]
We propose a two-stage training algorithm named FAIRIF.
It minimizes the loss over the reweighted data set where the sample weights are computed.
We show that FAIRIF yields models with better fairness-utility trade-offs against various types of bias.
arXiv Detail & Related papers (2022-01-15T05:14:48Z) - Robust Fairness-aware Learning Under Sample Selection Bias [17.09665420515772]
We propose a framework for robust and fair learning under sample selection bias.
We develop two algorithms to handle sample selection bias when test data is both available and unavailable.
arXiv Detail & Related papers (2021-05-24T23:23:36Z) - Can Active Learning Preemptively Mitigate Fairness Issues? [66.84854430781097]
dataset bias is one of the prevailing causes of unfairness in machine learning.
We study whether models trained with uncertainty-based ALs are fairer in their decisions with respect to a protected class.
We also explore the interaction of algorithmic fairness methods such as gradient reversal (GRAD) and BALD.
arXiv Detail & Related papers (2021-04-14T14:20:22Z) - Fairness in Semi-supervised Learning: Unlabeled Data Help to Reduce
Discrimination [53.3082498402884]
A growing specter in the rise of machine learning is whether the decisions made by machine learning models are fair.
We present a framework of fair semi-supervised learning in the pre-processing phase, including pseudo labeling to predict labels for unlabeled data.
A theoretical decomposition analysis of bias, variance and noise highlights the different sources of discrimination and the impact they have on fairness in semi-supervised learning.
arXiv Detail & Related papers (2020-09-25T05:48:56Z) - Causal Feature Selection for Algorithmic Fairness [61.767399505764736]
We consider fairness in the integration component of data management.
We propose an approach to identify a sub-collection of features that ensure the fairness of the dataset.
arXiv Detail & Related papers (2020-06-10T20:20:10Z) - How Training Data Impacts Performance in Learning-based Control [67.7875109298865]
This paper derives an analytical relationship between the density of the training data and the control performance.
We formulate a quality measure for the data set, which we refer to as $rho$-gap.
We show how the $rho$-gap can be applied to a feedback linearizing control law.
arXiv Detail & Related papers (2020-05-25T12:13:49Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.