BiRoDiff: Diffusion policies for bipedal robot locomotion on unseen terrains
- URL: http://arxiv.org/abs/2407.05424v1
- Date: Sun, 7 Jul 2024 16:03:33 GMT
- Title: BiRoDiff: Diffusion policies for bipedal robot locomotion on unseen terrains
- Authors: GVS Mothish, Manan Tayal, Shishir Kolathaya,
- Abstract summary: Locomotion on unknown terrains is essential for bipedal robots to handle novel real-world challenges.
We introduce a lightweight framework that learns a single walking controller that yields locomotion on multiple terrains.
- Score: 0.9480364746270075
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Locomotion on unknown terrains is essential for bipedal robots to handle novel real-world challenges, thus expanding their utility in disaster response and exploration. In this work, we introduce a lightweight framework that learns a single walking controller that yields locomotion on multiple terrains. We have designed a real-time robot controller based on diffusion models, which not only captures multiple behaviours with different velocities in a single policy but also generalizes well for unseen terrains. Our controller learns with offline data, which is better than online learning in aspects like scalability, simplicity in training scheme etc. We have designed and implemented a diffusion model-based policy controller in simulation on our custom-made Bipedal Robot model named Stoch BiRo. We have demonstrated its generalization capability and high frequency control step generation relative to typical generative models, which require huge onboarding compute.
Related papers
- Reinforcement Learning for Versatile, Dynamic, and Robust Bipedal Locomotion Control [106.32794844077534]
This paper presents a study on using deep reinforcement learning to create dynamic locomotion controllers for bipedal robots.
We develop a general control solution that can be used for a range of dynamic bipedal skills, from periodic walking and running to aperiodic jumping and standing.
This work pushes the limits of agility for bipedal robots through extensive real-world experiments.
arXiv Detail & Related papers (2024-01-30T10:48:43Z) - Real-World Humanoid Locomotion with Reinforcement Learning [92.85934954371099]
We present a fully learning-based approach for real-world humanoid locomotion.
Our controller can walk over various outdoor terrains, is robust to external disturbances, and can adapt in context.
arXiv Detail & Related papers (2023-03-06T18:59:09Z) - GenLoco: Generalized Locomotion Controllers for Quadrupedal Robots [87.32145104894754]
We introduce a framework for training generalized locomotion (GenLoco) controllers for quadrupedal robots.
Our framework synthesizes general-purpose locomotion controllers that can be deployed on a large variety of quadrupedal robots.
We show that our models acquire more general control strategies that can be directly transferred to novel simulated and real-world robots.
arXiv Detail & Related papers (2022-09-12T15:14:32Z) - Adapting Rapid Motor Adaptation for Bipedal Robots [73.5914982741483]
We leverage recent advances in rapid adaptation for locomotion control, and extend them to work on bipedal robots.
A-RMA adapts the base policy for the imperfect extrinsics estimator by finetuning it using model-free RL.
We demonstrate that A-RMA outperforms a number of RL-based baseline controllers and model-based controllers in simulation.
arXiv Detail & Related papers (2022-05-30T17:59:09Z) - An Adaptable Approach to Learn Realistic Legged Locomotion without
Examples [38.81854337592694]
This work proposes a generic approach for ensuring realism in locomotion by guiding the learning process with the spring-loaded inverted pendulum model as a reference.
We present experimental results showing that even in a model-free setup, the learned policies can generate realistic and energy-efficient locomotion gaits for a bipedal and a quadrupedal robot.
arXiv Detail & Related papers (2021-10-28T10:14:47Z) - Reinforcement Learning for Robust Parameterized Locomotion Control of
Bipedal Robots [121.42930679076574]
We present a model-free reinforcement learning framework for training robust locomotion policies in simulation.
domain randomization is used to encourage the policies to learn behaviors that are robust across variations in system dynamics.
We demonstrate this on versatile walking behaviors such as tracking a target walking velocity, walking height, and turning yaw.
arXiv Detail & Related papers (2021-03-26T07:14:01Z) - RLOC: Terrain-Aware Legged Locomotion using Reinforcement Learning and
Optimal Control [6.669503016190925]
We present a unified model-based and data-driven approach for quadrupedal planning and control.
We map sensory information and desired base velocity commands into footstep plans using a reinforcement learning policy.
We train and evaluate our framework on a complex quadrupedal system, ANYmal B, and demonstrate transferability to a larger and heavier robot, ANYmal C, without requiring retraining.
arXiv Detail & Related papers (2020-12-05T18:30:23Z) - Learning Quadrupedal Locomotion over Challenging Terrain [68.51539602703662]
Legged locomotion can dramatically expand the operational domains of robotics.
Conventional controllers for legged locomotion are based on elaborate state machines that explicitly trigger the execution of motion primitives and reflexes.
Here we present a radically robust controller for legged locomotion in challenging natural environments.
arXiv Detail & Related papers (2020-10-21T19:11:20Z) - Learning to Fly via Deep Model-Based Reinforcement Learning [37.37420200406336]
We learn a thrust-attitude controller for a quadrotor through model-based reinforcement learning.
We show that "learning to fly" can be achieved with less than 30 minutes of experience with a single drone.
arXiv Detail & Related papers (2020-03-19T15:55:39Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.