Enhancing Computer Programming Education with LLMs: A Study on Effective Prompt Engineering for Python Code Generation
- URL: http://arxiv.org/abs/2407.05437v1
- Date: Sun, 7 Jul 2024 16:41:07 GMT
- Title: Enhancing Computer Programming Education with LLMs: A Study on Effective Prompt Engineering for Python Code Generation
- Authors: Tianyu Wang, Nianjun Zhou, Zhixiong Chen,
- Abstract summary: Large language models (LLMs) and prompt engineering hold significant potential for advancing computer programming education through personalized instruction.
This paper explores three critical research questions: the systematic categorization of prompt engineering strategies tailored to diverse educational needs, the empowerment of LLMs to solve complex problems beyond their inherent capabilities, and the establishment of a robust framework for evaluating and implementing these strategies.
Experiments with GPT-4, GPT-4o, Llama3-8b, and Mixtral-8x7b models on datasets such as LeetCode and USACO reveal that GPT-4o consistently outperforms others, particularly with the "multi-step
- Score: 6.267144136593821
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Large language models (LLMs) and prompt engineering hold significant potential for advancing computer programming education through personalized instruction. This paper explores this potential by investigating three critical research questions: the systematic categorization of prompt engineering strategies tailored to diverse educational needs, the empowerment of LLMs to solve complex problems beyond their inherent capabilities, and the establishment of a robust framework for evaluating and implementing these strategies. Our methodology involves categorizing programming questions based on educational requirements, applying various prompt engineering strategies, and assessing the effectiveness of LLM-generated responses. Experiments with GPT-4, GPT-4o, Llama3-8b, and Mixtral-8x7b models on datasets such as LeetCode and USACO reveal that GPT-4o consistently outperforms others, particularly with the "multi-step" prompt strategy. The results show that tailored prompt strategies significantly enhance LLM performance, with specific strategies recommended for foundational learning, competition preparation, and advanced problem-solving. This study underscores the crucial role of prompt engineering in maximizing the educational benefits of LLMs. By systematically categorizing and testing these strategies, we provide a comprehensive framework for both educators and students to optimize LLM-based learning experiences. Future research should focus on refining these strategies and addressing current LLM limitations to further enhance educational outcomes in computer programming instruction.
Related papers
- EVOLvE: Evaluating and Optimizing LLMs For Exploration [76.66831821738927]
Large language models (LLMs) remain under-studied in scenarios requiring optimal decision-making under uncertainty.
We measure LLMs' (in)ability to make optimal decisions in bandits, a state-less reinforcement learning setting relevant to many applications.
Motivated by the existence of optimal exploration algorithms, we propose efficient ways to integrate this algorithmic knowledge into LLMs.
arXiv Detail & Related papers (2024-10-08T17:54:03Z) - Towards the Pedagogical Steering of Large Language Models for Tutoring: A Case Study with Modeling Productive Failure [36.83786872708736]
One-to-one tutoring is one of the most efficient methods of teaching.
We create a prototype tutor for high school math following Productive Failure (PF), an advanced and effective learning design.
We quantitatively show that StratL succeeds in steering the LLM to follow a Productive Failure tutoring strategy.
arXiv Detail & Related papers (2024-10-03T16:15:41Z) - Educational Personalized Learning Path Planning with Large Language Models [0.0]
This paper proposes a novel approach integrating Large Language Models (LLMs) with prompt engineering to address these challenges.
By designing prompts that incorporate learner-specific information, our method guides LLMs like LLama-2-70B and GPT-4 to generate personalized, coherent, and pedagogically sound learning paths.
arXiv Detail & Related papers (2024-07-16T14:32:56Z) - New Solutions on LLM Acceleration, Optimization, and Application [14.995654657013741]
Large Language Models (LLMs) have become extremely potent instruments with exceptional capacities for comprehending and producing human-like text in a range of applications.
However, the increasing size and complexity of LLMs present significant challenges in both training and deployment.
We provide a review of recent advancements and research directions aimed at addressing these challenges.
arXiv Detail & Related papers (2024-06-16T11:56:50Z) - Efficient Prompting for LLM-based Generative Internet of Things [88.84327500311464]
Large language models (LLMs) have demonstrated remarkable capacities on various tasks, and integrating the capacities of LLMs into the Internet of Things (IoT) applications has drawn much research attention recently.
Due to security concerns, many institutions avoid accessing state-of-the-art commercial LLM services, requiring the deployment and utilization of open-source LLMs in a local network setting.
We propose a LLM-based Generative IoT (GIoT) system deployed in the local network setting in this study.
arXiv Detail & Related papers (2024-06-14T19:24:00Z) - Synthesizing Programmatic Reinforcement Learning Policies with Large Language Model Guided Search [7.769411917500852]
We introduce a novel LLM-guided search framework (LLM-GS)
Our key insight is to leverage the programming expertise and common sense reasoning of LLMs to enhance the efficiency of assumption-free, random-guessing search methods.
We develop a search algorithm named Scheduled Hill Climbing, designed to efficiently explore the programmatic search space to improve the programs consistently.
arXiv Detail & Related papers (2024-05-26T06:33:48Z) - Analyzing LLM Usage in an Advanced Computing Class in India [4.580708389528142]
This study examines the use of large language models (LLMs) by undergraduate and graduate students for programming assignments in advanced computing classes.
We conducted a comprehensive analysis involving 411 students from a Distributed Systems class at an Indian university.
arXiv Detail & Related papers (2024-04-06T12:06:56Z) - How Can LLM Guide RL? A Value-Based Approach [68.55316627400683]
Reinforcement learning (RL) has become the de facto standard practice for sequential decision-making problems by improving future acting policies with feedback.
Recent developments in large language models (LLMs) have showcased impressive capabilities in language understanding and generation, yet they fall short in exploration and self-improvement capabilities.
We develop an algorithm named LINVIT that incorporates LLM guidance as a regularization factor in value-based RL, leading to significant reductions in the amount of data needed for learning.
arXiv Detail & Related papers (2024-02-25T20:07:13Z) - The Efficiency Spectrum of Large Language Models: An Algorithmic Survey [54.19942426544731]
The rapid growth of Large Language Models (LLMs) has been a driving force in transforming various domains.
This paper examines the multi-faceted dimensions of efficiency essential for the end-to-end algorithmic development of LLMs.
arXiv Detail & Related papers (2023-12-01T16:00:25Z) - SciBench: Evaluating College-Level Scientific Problem-Solving Abilities of Large Language Models [70.5763210869525]
We introduce an expansive benchmark suite SciBench for Large Language Model (LLM)
SciBench contains a dataset featuring a range of collegiate-level scientific problems from mathematics, chemistry, and physics domains.
The results reveal that the current LLMs fall short of delivering satisfactory performance, with the best overall score of merely 43.22%.
arXiv Detail & Related papers (2023-07-20T07:01:57Z) - A Survey on Large Language Models for Recommendation [77.91673633328148]
Large Language Models (LLMs) have emerged as powerful tools in the field of Natural Language Processing (NLP)
This survey presents a taxonomy that categorizes these models into two major paradigms, respectively Discriminative LLM for Recommendation (DLLM4Rec) and Generative LLM for Recommendation (GLLM4Rec)
arXiv Detail & Related papers (2023-05-31T13:51:26Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.