A Survey on Feedback-based Multi-step Reasoning for Large Language Models on Mathematics
- URL: http://arxiv.org/abs/2502.14333v1
- Date: Thu, 20 Feb 2025 07:31:00 GMT
- Title: A Survey on Feedback-based Multi-step Reasoning for Large Language Models on Mathematics
- Authors: Ting-Ruen Wei, Haowei Liu, Xuyang Wu, Yi Fang,
- Abstract summary: We present a survey of strategies utilizing feedback at the step and outcome levels to enhance multi-step math reasoning for LLMs.<n>As multi-step reasoning emerges a crucial component in scaling LLMs, we hope to establish its foundation for easier understanding and empower further research.
- Score: 9.681821524089761
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Recent progress in large language models (LLM) found chain-of-thought prompting strategies to improve the reasoning ability of LLMs by encouraging problem solving through multiple steps. Therefore, subsequent research aimed to integrate the multi-step reasoning process into the LLM itself through process rewards as feedback and achieved improvements over prompting strategies. Due to the cost of step-level annotation, some turn to outcome rewards as feedback. Aside from these training-based approaches, training-free techniques leverage frozen LLMs or external tools for feedback at each step to enhance the reasoning process. With the abundance of work in mathematics due to its logical nature, we present a survey of strategies utilizing feedback at the step and outcome levels to enhance multi-step math reasoning for LLMs. As multi-step reasoning emerges a crucial component in scaling LLMs, we hope to establish its foundation for easier understanding and empower further research.
Related papers
- A Survey of Scaling in Large Language Model Reasoning [62.92861523305361]
We provide a comprehensive examination of scaling in large Language models (LLMs) reasoning.
We analyze scaling in reasoning steps that improves multi-step inference and logical consistency.
We discuss scaling in training-enabled reasoning, focusing on optimization through iterative model improvement.
arXiv Detail & Related papers (2025-04-02T23:51:27Z) - R1-VL: Learning to Reason with Multimodal Large Language Models via Step-wise Group Relative Policy Optimization [86.32257216965229]
We propose a new online reinforcement learning framework that enables MLLMs to self-improve reasoning ability via simple, effective and dense step-wise rewarding.
StepGRPO introduces two novel rule-based reasoning rewards: Step-wise Reasoning Accuracy Reward (StepRAR) and Step-wise Reasoning Validity Reward (StepRVR)
With the proposed StepGRPO, we introduce R1-VL, a series of MLLMs with outstanding capabilities in step-by-step reasoning.
arXiv Detail & Related papers (2025-03-17T08:51:44Z) - ReMA: Learning to Meta-think for LLMs with Multi-Agent Reinforcement Learning [54.787341008881036]
We introduce Reinforced Meta-thinking Agents (ReMA), a novel framework that leverages Multi-Agent Reinforcement Learning (MARL) to elicit meta-thinking behaviors.
ReMA decouples the reasoning process into two hierarchical agents: a high-level meta-thinking agent responsible for generating strategic oversight and plans, and a low-level reasoning agent for detailed executions.
Experimental results demonstrate that ReMA outperforms single-agent RL baselines on complex reasoning tasks.
arXiv Detail & Related papers (2025-03-12T16:05:31Z) - Advancing Reasoning in Large Language Models: Promising Methods and Approaches [0.0]
Large Language Models (LLMs) have succeeded remarkably in various natural language processing (NLP) tasks.<n>Their ability to perform complex reasoning-spanning logical deduction, mathematical problem-solving, commonsense inference, and multi-step reasoning-often falls short of human expectations.<n>This survey provides a comprehensive review of emerging techniques enhancing reasoning in LLMs.
arXiv Detail & Related papers (2025-02-05T23:31:39Z) - Satori: Reinforcement Learning with Chain-of-Action-Thought Enhances LLM Reasoning via Autoregressive Search [57.28671084993782]
Large language models (LLMs) have demonstrated remarkable reasoning capabilities across diverse domains.<n>Recent studies have shown that increasing test-time computation enhances LLMs' reasoning capabilities.<n>We propose a two-stage training paradigm: 1) a small-scale format tuning stage to internalize the COAT reasoning format and 2) a large-scale self-improvement stage leveraging reinforcement learning.
arXiv Detail & Related papers (2025-02-04T17:26:58Z) - Can LLMs plan paths with extra hints from solvers? [2.874944508343474]
Large Language Models (LLMs) have shown remarkable capabilities in natural language processing, mathematical problem solving, and tasks related to program synthesis.
This paper explores an approach for enhancing LLM performance in solving a classical robotic planning task by integrating solver-generated feedback.
arXiv Detail & Related papers (2024-10-07T14:00:08Z) - BloomWise: Enhancing Problem-Solving capabilities of Large Language Models using Bloom's-Taxonomy-Inspired Prompts [59.83547898874152]
We introduce BloomWise, a new prompting technique, inspired by Bloom's taxonomy, to improve the performance of Large Language Models (LLMs)
The decision regarding the need to employ more sophisticated cognitive skills is based on self-evaluation performed by the LLM.
In extensive experiments across 4 popular math reasoning datasets, we have demonstrated the effectiveness of our proposed approach.
arXiv Detail & Related papers (2024-10-05T09:27:52Z) - DOTS: Learning to Reason Dynamically in LLMs via Optimal Reasoning Trajectories Search [37.16633337724158]
DOTS is an approach enabling LLMs to reason dynamically via optimal reasoning trajectory search.
Our method consistently outperforms static reasoning techniques and the vanilla instruction tuning approach.
arXiv Detail & Related papers (2024-10-04T18:58:09Z) - Q*: Improving Multi-step Reasoning for LLMs with Deliberative Planning [53.6472920229013]
Large Language Models (LLMs) have demonstrated impressive capability in many natural language tasks.
LLMs are prone to produce errors, hallucinations and inconsistent statements when performing multi-step reasoning.
We introduce Q*, a framework for guiding LLMs decoding process with deliberative planning.
arXiv Detail & Related papers (2024-06-20T13:08:09Z) - Can LLMs Solve longer Math Word Problems Better? [47.227621867242]
Math Word Problems (MWPs) play a vital role in assessing the capabilities of Large Language Models (LLMs)<n>The impact of longer contexts on mathematical reasoning remains under-explored.<n>This study pioneers the investigation of Context Length Generalizability (CoLeG)
arXiv Detail & Related papers (2024-05-23T17:13:50Z) - LLM Inference Unveiled: Survey and Roofline Model Insights [62.92811060490876]
Large Language Model (LLM) inference is rapidly evolving, presenting a unique blend of opportunities and challenges.
Our survey stands out from traditional literature reviews by not only summarizing the current state of research but also by introducing a framework based on roofline model.
This framework identifies the bottlenecks when deploying LLMs on hardware devices and provides a clear understanding of practical problems.
arXiv Detail & Related papers (2024-02-26T07:33:05Z) - Take a Step Back: Evoking Reasoning via Abstraction in Large Language
Models [122.19845578690466]
Step-Back Prompting enables LLMs to do abstractions to derive high-level concepts and first principles from instances containing specific details.
Using the concepts and principles to guide reasoning, LLMs significantly improve their abilities in following a correct reasoning path towards the solution.
arXiv Detail & Related papers (2023-10-09T19:48:55Z) - Fill in the Blank: Exploring and Enhancing LLM Capabilities for Backward Reasoning in Math Word Problems [17.80128896525717]
backward reasoning is relatively unexplored.
backward reasoning can be seen as the ''inverse'' of forward reasoning.
We propose variations of three different forward reasoning strategies to improve performance.
arXiv Detail & Related papers (2023-10-03T12:03:06Z) - Re-Reading Improves Reasoning in Large Language Models [87.46256176508376]
We introduce a simple, yet general and effective prompting method, Re2, to enhance the reasoning capabilities of off-the-shelf Large Language Models (LLMs)
Unlike most thought-eliciting prompting methods, such as Chain-of-Thought (CoT), Re2 shifts the focus to the input by processing questions twice, thereby enhancing the understanding process.
We evaluate Re2 on extensive reasoning benchmarks across 14 datasets, spanning 112 experiments, to validate its effectiveness and generality.
arXiv Detail & Related papers (2023-09-12T14:36:23Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.