論文の概要: Studying the Impact of TensorFlow and PyTorch Bindings on Machine Learning Software Quality
- arxiv url: http://arxiv.org/abs/2407.05466v1
- Date: Sun, 7 Jul 2024 18:39:27 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-09 17:39:22.166589
- Title: Studying the Impact of TensorFlow and PyTorch Bindings on Machine Learning Software Quality
- Title(参考訳): TensorFlowとPyTorchのバインディングが機械学習ソフトウェアの品質に与える影響について
- Authors: Hao Li, Gopi Krishnan Rajbahadur, Cor-Paul Bezemer,
- Abstract要約: C#、Rust、Python、JavaScriptのバインディングがソフトウェアの品質に与える影響について調査する。
実験により、あるモデルがひとつのバインディングでトレーニングされ、同じフレームワークの別のバインディングでの推論に使用されることが、精度を損なうことなく明らかとなった。
- 参考スコア(独自算出の注目度): 13.098132379075603
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Bindings for machine learning frameworks (such as TensorFlow and PyTorch) allow developers to integrate a framework's functionality using a programming language different from the framework's default language (usually Python). In this paper, we study the impact of using TensorFlow and PyTorch bindings in C#, Rust, Python and JavaScript on the software quality in terms of correctness (training and test accuracy) and time cost (training and inference time) when training and performing inference on five widely used deep learning models. Our experiments show that a model can be trained in one binding and used for inference in another binding for the same framework without losing accuracy. Our study is the first to show that using a non-default binding can help improve machine learning software quality from the time cost perspective compared to the default Python binding while still achieving the same level of correctness.
- Abstract(参考訳): マシンラーニングフレームワーク(TensorFlowやPyTorchなど)のバインディングにより、フレームワークのデフォルト言語(通常はPython)とは異なるプログラミング言語を使用して、フレームワークの機能を統合することが可能になる。
本稿では,C#,Rust,Python,JavaScriptにおけるTensorFlowとPyTorchのバインディングが,5つの広く使用されているディープラーニングモデルのトレーニングおよび推論の実行において,正確性(トレーニングとテストの精度)と時間コスト(トレーニングと推論時間)の観点からソフトウェア品質に与える影響について検討する。
実験により、あるモデルがひとつのバインディングでトレーニングされ、同じフレームワークの別のバインディングでの推論に使用されることが、精度を損なうことなく明らかとなった。
我々の研究は、非デフォルトバインディングを使用することで、デフォルトのPythonバインディングと比較して、同じレベルの正確性を保ちながら、時間的コストの観点から機械学習ソフトウェアの品質を向上させることができることを初めて示しました。
関連論文リスト
- PyPulse: A Python Library for Biosignal Imputation [58.35269251730328]
PyPulseは,臨床およびウェアラブルの両方のセンサ設定において生体信号の計算を行うPythonパッケージである。
PyPulseのフレームワークは、非機械学習バイオリサーバーを含む幅広いユーザーベースに対して、使い勝手の良いモジュラーで拡張可能なフレームワークを提供する。
PyPulseはMITライセンスでGithubとPyPIでリリースしました。
論文 参考訳(メタデータ) (2024-12-09T11:00:55Z) - Adapting Vision-Language Models to Open Classes via Test-Time Prompt Tuning [50.26965628047682]
学習済みのモデルをオープンクラスに適応させることは、機械学習において難しい問題である。
本稿では,両者の利点を組み合わせたテスト時プロンプトチューニング手法を提案する。
提案手法は,基本クラスと新クラスの両方を考慮し,すべての比較手法を平均的に上回る結果を得た。
論文 参考訳(メタデータ) (2024-08-29T12:34:01Z) - Match me if you can: Semi-Supervised Semantic Correspondence Learning with Unpaired Images [76.47980643420375]
本稿では,意味的対応の学習に固有のデータ・ハングリー・マターが存在するという仮説に基づく。
我々は,機械の監督を通じて,ペア化されたキーポイントを確実に強化する単純な機械注釈器を実証する。
我々のモデルは,SPair-71k,PF-PASCAL,PF-WILLOWといった意味対応学習ベンチマークの最先端モデルを上回る。
論文 参考訳(メタデータ) (2023-11-30T13:22:15Z) - Transactional Python for Durable Machine Learning: Vision, Challenges,
and Feasibility [5.669983975369642]
Pythonアプリケーションは、トレーニングされたモデルや抽出された機能などの重要なデータを失う可能性がある。
本稿では,ユーザプログラムやPythonカーネルにコード修正を加えることなくDARTを提供するトランザクショナルPythonのビジョンについて述べる。
公開PyTorchおよびScikit-learnアプリケーションによる概念実証実装の評価は、DARTが1.5%~15.6%のオーバーヘッドで提供可能であることを示している。
論文 参考訳(メタデータ) (2023-05-15T16:27:09Z) - T5Score: Discriminative Fine-tuning of Generative Evaluation Metrics [94.69907794006826]
我々は、現在利用可能なデータから、教師なし信号と教師なし信号の両方を用いて、両方の世界のベストを結合するフレームワークを提案する。
このアイデアを,mT5をバックボーンとするトレーニング信号を使用するメトリックであるT5Scoreをトレーニングすることで,運用する。
T5Scoreは、セグメントレベルの既存のトップスコアメトリクスに対して、すべてのデータセットで最高のパフォーマンスを達成する。
論文 参考訳(メタデータ) (2022-12-12T06:29:04Z) - Latte: Cross-framework Python Package for Evaluation of Latent-Based
Generative Models [65.51757376525798]
Latteは、潜伏型生成モデルを評価するためのPythonライブラリである。
LatteはPyTorchと/Kerasの両方と互換性があり、関数型APIとモジュール型APIの両方を提供する。
論文 参考訳(メタデータ) (2021-12-20T16:00:28Z) - torch.fx: Practical Program Capture and Transformation for Deep Learning
in Python [0.0]
深層学習に使用されるプログラムキャプチャと変換の異なる設計について検討する。
長い尾ではなく典型的なディープラーニングのユースケースのために設計することで、プログラムのキャプチャと変換のためのシンプルなフレームワークを構築することができる。
我々は、Pythonで完全に書かれ、ML実践者による高い開発者の生産性のために最適化されたPyTorch用のプログラムキャプチャと変換ライブラリである torch.fx にこの原則を適用した。
論文 参考訳(メタデータ) (2021-12-15T19:16:29Z) - COMBO: State-of-the-Art Morphosyntactic Analysis [0.0]
COMBOは、音声の正確なタグ付け、形態解析、補綴、および(強化された)依存性解析のための完全に神経的なNLPシステムである。
隠れた層から抽出したベクトル表現を公開しながら、分類的形態合成特性を予測する。
40以上の言語で、トレーニング済みのモデルを自動的にダウンロードして、Pythonパッケージをインストールするのは簡単です。
論文 参考訳(メタデータ) (2021-09-11T20:00:20Z) - Using Python for Model Inference in Deep Learning [0.6027358520885614]
pythonで推論を実行しながら、パフォーマンスとパッケージングの制約を満たす方法を示します。
複数のPythonインタプリタを単一のプロセスで使用して,スケーラブルな推論を実現する方法を提案する。
論文 参考訳(メタデータ) (2021-04-01T04:48:52Z) - The Right Tool for the Job: Matching Model and Instance Complexities [62.95183777679024]
NLPモデルが大きくなればなるほど、訓練されたモデルを実行するには、金銭的・環境的なコストを発生させる重要な計算資源が必要である。
我々は、推論中、早期(かつ高速)の"exit"を可能にする文脈表現微調整の修正を提案する。
3つのテキスト分類データセットと2つの自然言語推論ベンチマークの2つのタスクで、5つの異なるデータセットに対して提案した修正を検証した。
論文 参考訳(メタデータ) (2020-04-16T04:28:08Z) - TF-Coder: Program Synthesis for Tensor Manipulations [29.46838583290554]
本稿では,プルーニングを例に,TF-Coderというプログラミングツールを提案する。
入力と出力のテンソルの特徴とタスクの自然言語記述から操作を予測するためにモデルを訓練する。
TF-Coderは、実世界のタスクのうち63を5分以内に解決する。
論文 参考訳(メタデータ) (2020-03-19T22:53:47Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。