A Re-solving Heuristic for Dynamic Assortment Optimization with Knapsack Constraints
- URL: http://arxiv.org/abs/2407.05564v1
- Date: Mon, 8 Jul 2024 02:40:20 GMT
- Title: A Re-solving Heuristic for Dynamic Assortment Optimization with Knapsack Constraints
- Authors: Xi Chen, Mo Liu, Yining Wang, Yuan Zhou,
- Abstract summary: We consider a multi-stage dynamic assortment optimization problem with multi-nomial choice modeling (MNL) under resource knapsack constraints.
With the exact optimal dynamic assortment solution being computationally intractable, a practical strategy is to adopt the re-solving technique that periodically re-optimizes deterministic linear programs.
We propose a new epoch-based re-solving algorithm that effectively transforms the denominator of the objective into the constraint.
- Score: 14.990988698038686
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In this paper, we consider a multi-stage dynamic assortment optimization problem with multi-nomial choice modeling (MNL) under resource knapsack constraints. Given the current resource inventory levels, the retailer makes an assortment decision at each period, and the goal of the retailer is to maximize the total profit from purchases. With the exact optimal dynamic assortment solution being computationally intractable, a practical strategy is to adopt the re-solving technique that periodically re-optimizes deterministic linear programs (LP) arising from fluid approximation. However, the fractional structure of MNL makes the fluid approximation in assortment optimization highly non-linear, which brings new technical challenges. To address this challenge, we propose a new epoch-based re-solving algorithm that effectively transforms the denominator of the objective into the constraint. Theoretically, we prove that the regret (i.e., the gap between the resolving policy and the optimal objective of the fluid approximation) scales logarithmically with the length of time horizon and resource capacities.
Related papers
- Deep Reinforcement Learning for Online Optimal Execution Strategies [49.1574468325115]
This paper tackles the challenge of learning non-Markovian optimal execution strategies in dynamic financial markets.
We introduce a novel actor-critic algorithm based on Deep Deterministic Policy Gradient (DDPG)
We show that our algorithm successfully approximates the optimal execution strategy.
arXiv Detail & Related papers (2024-10-17T12:38:08Z) - M-HOF-Opt: Multi-Objective Hierarchical Output Feedback Optimization via Multiplier Induced Loss Landscape Scheduling [4.499391876093543]
We address the online choice of weight multipliers for multi-objective optimization of many loss terms parameterized by neural works.
Our method is multiplier-free and operates at the timescale of epochs.
It also circumvents the excessive memory requirements and heavy computational burden of existing multi-objective deep learning methods.
arXiv Detail & Related papers (2024-03-20T16:38:26Z) - Analyzing and Enhancing the Backward-Pass Convergence of Unrolled
Optimization [50.38518771642365]
The integration of constrained optimization models as components in deep networks has led to promising advances on many specialized learning tasks.
A central challenge in this setting is backpropagation through the solution of an optimization problem, which often lacks a closed form.
This paper provides theoretical insights into the backward pass of unrolled optimization, showing that it is equivalent to the solution of a linear system by a particular iterative method.
A system called Folded Optimization is proposed to construct more efficient backpropagation rules from unrolled solver implementations.
arXiv Detail & Related papers (2023-12-28T23:15:18Z) - Resilient Constrained Reinforcement Learning [87.4374430686956]
We study a class of constrained reinforcement learning (RL) problems in which multiple constraint specifications are not identified before study.
It is challenging to identify appropriate constraint specifications due to the undefined trade-off between the reward training objective and the constraint satisfaction.
We propose a new constrained RL approach that searches for policy and constraint specifications together.
arXiv Detail & Related papers (2023-12-28T18:28:23Z) - Online Joint Assortment-Inventory Optimization under MNL Choices [14.530542487845732]
We study an online joint assortment-inventory optimization problem, in which we assume that the choice behavior of each customer follows the Multinomial Logit (MNL) choice model.
We propose a novel algorithm that can effectively balance the exploration and exploitation in the online decision-making of assortment and inventory.
arXiv Detail & Related papers (2023-04-04T09:25:34Z) - Backpropagation of Unrolled Solvers with Folded Optimization [55.04219793298687]
The integration of constrained optimization models as components in deep networks has led to promising advances on many specialized learning tasks.
One typical strategy is algorithm unrolling, which relies on automatic differentiation through the operations of an iterative solver.
This paper provides theoretical insights into the backward pass of unrolled optimization, leading to a system for generating efficiently solvable analytical models of backpropagation.
arXiv Detail & Related papers (2023-01-28T01:50:42Z) - Faster Last-iterate Convergence of Policy Optimization in Zero-Sum
Markov Games [63.60117916422867]
This paper focuses on the most basic setting of competitive multi-agent RL, namely two-player zero-sum Markov games.
We propose a single-loop policy optimization method with symmetric updates from both agents, where the policy is updated via the entropy-regularized optimistic multiplicative weights update (OMWU) method.
Our convergence results improve upon the best known complexities, and lead to a better understanding of policy optimization in competitive Markov games.
arXiv Detail & Related papers (2022-10-03T16:05:43Z) - Physics and Equality Constrained Artificial Neural Networks: Application
to Partial Differential Equations [1.370633147306388]
Physics-informed neural networks (PINNs) have been proposed to learn the solution of partial differential equations (PDE)
Here, we show that this specific way of formulating the objective function is the source of severe limitations in the PINN approach.
We propose a versatile framework that can tackle both inverse and forward problems.
arXiv Detail & Related papers (2021-09-30T05:55:35Z) - An Online Prediction Approach Based on Incremental Support Vector
Machine for Dynamic Multiobjective Optimization [19.336520152294213]
We propose a novel prediction algorithm based on incremental support vector machine (ISVM)
We treat the solving of dynamic multiobjective optimization problems (DMOPs) as an online learning process.
The proposed algorithm can effectively tackle dynamic multiobjective optimization problems.
arXiv Detail & Related papers (2021-02-24T08:51:23Z) - Combining Deep Learning and Optimization for Security-Constrained
Optimal Power Flow [94.24763814458686]
Security-constrained optimal power flow (SCOPF) is fundamental in power systems.
Modeling of APR within the SCOPF problem results in complex large-scale mixed-integer programs.
This paper proposes a novel approach that combines deep learning and robust optimization techniques.
arXiv Detail & Related papers (2020-07-14T12:38:21Z) - Constrained Combinatorial Optimization with Reinforcement Learning [0.30938904602244344]
This paper presents a framework to tackle constrained optimization problems using deep Reinforcement Learning (RL)
We extend the Neural Combinatorial Optimization (NCO) theory in order to deal with constraints in its formulation.
In that context, the solution is iteratively constructed based on interactions with the environment.
arXiv Detail & Related papers (2020-06-22T03:13:07Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.