Online Joint Assortment-Inventory Optimization under MNL Choices
- URL: http://arxiv.org/abs/2304.02022v1
- Date: Tue, 4 Apr 2023 09:25:34 GMT
- Title: Online Joint Assortment-Inventory Optimization under MNL Choices
- Authors: Yong Liang, Xiaojie Mao, Shiyuan Wang
- Abstract summary: We study an online joint assortment-inventory optimization problem, in which we assume that the choice behavior of each customer follows the Multinomial Logit (MNL) choice model.
We propose a novel algorithm that can effectively balance the exploration and exploitation in the online decision-making of assortment and inventory.
- Score: 14.530542487845732
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We study an online joint assortment-inventory optimization problem, in which
we assume that the choice behavior of each customer follows the Multinomial
Logit (MNL) choice model, and the attraction parameters are unknown a priori.
The retailer makes periodic assortment and inventory decisions to dynamically
learn from the realized demands about the attraction parameters while
maximizing the expected total profit over time. In this paper, we propose a
novel algorithm that can effectively balance the exploration and exploitation
in the online decision-making of assortment and inventory. Our algorithm builds
on a new estimator for the MNL attraction parameters, a novel approach to
incentivize exploration by adaptively tuning certain known and unknown
parameters, and an optimization oracle to static single-cycle
assortment-inventory planning problems with given parameters. We establish a
regret upper bound for our algorithm and a lower bound for the online joint
assortment-inventory optimization problem, suggesting that our algorithm
achieves nearly optimal regret rate, provided that the static optimization
oracle is exact. Then we incorporate more practical approximate static
optimization oracles into our algorithm, and bound from above the impact of
static optimization errors on the regret of our algorithm. At last, we perform
numerical studies to demonstrate the effectiveness of our proposed algorithm.
Related papers
- An incremental preference elicitation-based approach to learning potentially non-monotonic preferences in multi-criteria sorting [53.36437745983783]
We first construct a max-margin optimization-based model to model potentially non-monotonic preferences.
We devise information amount measurement methods and question selection strategies to pinpoint the most informative alternative in each iteration.
Two incremental preference elicitation-based algorithms are developed to learn potentially non-monotonic preferences.
arXiv Detail & Related papers (2024-09-04T14:36:20Z) - Discovering Preference Optimization Algorithms with and for Large Language Models [50.843710797024805]
offline preference optimization is a key method for enhancing and controlling the quality of Large Language Model (LLM) outputs.
We perform objective discovery to automatically discover new state-of-the-art preference optimization algorithms without (expert) human intervention.
Experiments demonstrate the state-of-the-art performance of DiscoPOP, a novel algorithm that adaptively blends logistic and exponential losses.
arXiv Detail & Related papers (2024-06-12T16:58:41Z) - Stop Relying on No-Choice and Do not Repeat the Moves: Optimal,
Efficient and Practical Algorithms for Assortment Optimization [38.57171985309975]
We develop efficient algorithms for the problem of regret in assortment selection with emphPlackett Luce (PL) based user choices.
Our methods are practical, provably optimal, and devoid of the aforementioned limitations of the existing methods.
arXiv Detail & Related papers (2024-02-29T07:17:04Z) - Parameter-Free Algorithms for Performative Regret Minimization under
Decision-Dependent Distributions [15.396561118589577]
performative risk minimization is a formulation of optimization under decision-dependent distributions.
Our algorithms significantly improve upon existing Lipschitz constant distribution parameter-based methods.
We provide experimental results that demonstrate the numerical superiority of our algorithms over the existing method and other black-box optimistic optimization methods.
arXiv Detail & Related papers (2024-02-23T08:36:28Z) - End-to-End Learning for Fair Multiobjective Optimization Under
Uncertainty [55.04219793298687]
The Predict-Then-Forecast (PtO) paradigm in machine learning aims to maximize downstream decision quality.
This paper extends the PtO methodology to optimization problems with nondifferentiable Ordered Weighted Averaging (OWA) objectives.
It shows how optimization of OWA functions can be effectively integrated with parametric prediction for fair and robust optimization under uncertainty.
arXiv Detail & Related papers (2024-02-12T16:33:35Z) - Efficient Learning of Decision-Making Models: A Penalty Block Coordinate
Descent Algorithm for Data-Driven Inverse Optimization [12.610576072466895]
We consider the inverse problem where we use prior decision data to uncover the underlying decision-making process.
This statistical learning problem is referred to as data-driven inverse optimization.
We propose an efficient block coordinate descent-based algorithm to solve large problem instances.
arXiv Detail & Related papers (2022-10-27T12:52:56Z) - Generalizing Bayesian Optimization with Decision-theoretic Entropies [102.82152945324381]
We consider a generalization of Shannon entropy from work in statistical decision theory.
We first show that special cases of this entropy lead to popular acquisition functions used in BO procedures.
We then show how alternative choices for the loss yield a flexible family of acquisition functions.
arXiv Detail & Related papers (2022-10-04T04:43:58Z) - Optimal Parameter-free Online Learning with Switching Cost [47.415099037249085]
-freeness in online learning refers to the adaptivity of an algorithm with respect to the optimal decision in hindsight.
In this paper, we design such algorithms in the presence of switching cost - the latter penalizes the optimistic updates required by parameter-freeness.
We propose a simple yet powerful algorithm for Online Linear Optimization (OLO) with switching cost, which improves the existing suboptimal regret bound [ZCP22a] to the optimal rate.
arXiv Detail & Related papers (2022-05-13T18:44:27Z) - Convergence of adaptive algorithms for weakly convex constrained
optimization [59.36386973876765]
We prove the $mathcaltilde O(t-1/4)$ rate of convergence for the norm of the gradient of Moreau envelope.
Our analysis works with mini-batch size of $1$, constant first and second order moment parameters, and possibly smooth optimization domains.
arXiv Detail & Related papers (2020-06-11T17:43:19Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.