SLIM: Spuriousness Mitigation with Minimal Human Annotations
- URL: http://arxiv.org/abs/2407.05594v1
- Date: Mon, 8 Jul 2024 04:15:44 GMT
- Title: SLIM: Spuriousness Mitigation with Minimal Human Annotations
- Authors: Xiwei Xuan, Ziquan Deng, Hsuan-Tien Lin, Kwan-Liu Ma,
- Abstract summary: We introduce SLIM, a cost-effective and performance-targeted approach to reducing spurious correlations in deep learning.
By prioritizing data quality over complicated training strategies, SLIM curates a smaller yet more feature-balanced data subset, fostering the development of spuriousness-robust models.
- Score: 24.863960194779875
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Recent studies highlight that deep learning models often learn spurious features mistakenly linked to labels, compromising their reliability in real-world scenarios where such correlations do not hold. Despite the increasing research effort, existing solutions often face two main challenges: they either demand substantial annotations of spurious attributes, or they yield less competitive outcomes with expensive training when additional annotations are absent. In this paper, we introduce SLIM, a cost-effective and performance-targeted approach to reducing spurious correlations in deep learning. Our method leverages a human-in-the-loop protocol featuring a novel attention labeling mechanism with a constructed attention representation space. SLIM significantly reduces the need for exhaustive additional labeling, requiring human input for fewer than 3% of instances. By prioritizing data quality over complicated training strategies, SLIM curates a smaller yet more feature-balanced data subset, fostering the development of spuriousness-robust models. Experimental validations across key benchmarks demonstrate that SLIM competes with or exceeds the performance of leading methods while significantly reducing costs. The SLIM framework thus presents a promising path for developing reliable models more efficiently. Our code is available in https://github.com/xiweix/SLIM.git/.
Related papers
- Semi-Supervised Reward Modeling via Iterative Self-Training [52.48668920483908]
We propose Semi-Supervised Reward Modeling (SSRM), an approach that enhances RM training using unlabeled data.
We demonstrate that SSRM significantly improves reward models without incurring additional labeling costs.
Overall, SSRM substantially reduces the dependency on large volumes of human-annotated data, thereby decreasing the overall cost and time involved in training effective reward models.
arXiv Detail & Related papers (2024-09-10T22:57:58Z) - Is Difficulty Calibration All We Need? Towards More Practical Membership Inference Attacks [16.064233621959538]
We propose a query-efficient and computation-efficient MIA that directly textbfRe-levertextbfAges the original membershitextbfP scores to mtextbfItigate the errors in textbfDifficulty calibration.
arXiv Detail & Related papers (2024-08-31T11:59:42Z) - Language Model Cascades: Token-level uncertainty and beyond [65.38515344964647]
Recent advances in language models (LMs) have led to significant improvements in quality on complex NLP tasks.
Cascading offers a simple strategy to achieve more favorable cost-quality tradeoffs.
We show that incorporating token-level uncertainty through learned post-hoc deferral rules can significantly outperform simple aggregation strategies.
arXiv Detail & Related papers (2024-04-15T21:02:48Z) - Uncertainty-aware Parameter-Efficient Self-training for Semi-supervised
Language Understanding [38.11411155621616]
We study self-training as one of the predominant semi-supervised learning approaches.
We present UPET, a novel Uncertainty-aware self-Training framework.
We show that UPET achieves a substantial improvement in terms of performance and efficiency.
arXiv Detail & Related papers (2023-10-19T02:18:29Z) - To Repeat or Not To Repeat: Insights from Scaling LLM under Token-Crisis [50.31589712761807]
Large language models (LLMs) are notoriously token-hungry during pre-training, and high-quality text data on the web is approaching its scaling limit for LLMs.
We investigate the consequences of repeating pre-training data, revealing that the model is susceptible to overfitting.
Second, we examine the key factors contributing to multi-epoch degradation, finding that significant factors include dataset size, model parameters, and training objectives.
arXiv Detail & Related papers (2023-05-22T17:02:15Z) - Avoiding spurious correlations via logit correction [21.261525854506743]
Empirical studies suggest that machine learning models trained with empirical risk often rely on attributes that may be spuriously correlated with the class labels.
In this work, we consider a situation where potential spurious correlations are present in the majority of training data.
We propose the logit correction (LC) loss, a simple yet effective improvement on the softmax cross-entropy loss, to correct the sample logit.
arXiv Detail & Related papers (2022-12-02T20:30:59Z) - MaxMatch: Semi-Supervised Learning with Worst-Case Consistency [149.03760479533855]
We propose a worst-case consistency regularization technique for semi-supervised learning (SSL)
We present a generalization bound for SSL consisting of the empirical loss terms observed on labeled and unlabeled training data separately.
Motivated by this bound, we derive an SSL objective that minimizes the largest inconsistency between an original unlabeled sample and its multiple augmented variants.
arXiv Detail & Related papers (2022-09-26T12:04:49Z) - Scale-Equivalent Distillation for Semi-Supervised Object Detection [57.59525453301374]
Recent Semi-Supervised Object Detection (SS-OD) methods are mainly based on self-training, generating hard pseudo-labels by a teacher model on unlabeled data as supervisory signals.
We analyze the challenges these methods meet with the empirical experiment results.
We introduce a novel approach, Scale-Equivalent Distillation (SED), which is a simple yet effective end-to-end knowledge distillation framework robust to large object size variance and class imbalance.
arXiv Detail & Related papers (2022-03-23T07:33:37Z) - A new weakly supervised approach for ALS point cloud semantic
segmentation [1.4620086904601473]
We propose a deep-learning based weakly supervised framework for semantic segmentation of ALS point clouds.
We exploit potential information from unlabeled data subject to incomplete and sparse labels.
Our method achieves an overall accuracy of 83.0% and an average F1 score of 70.0%, which have increased by 6.9% and 12.8% respectively.
arXiv Detail & Related papers (2021-10-04T14:00:23Z) - Attentional-Biased Stochastic Gradient Descent [74.49926199036481]
We present a provable method (named ABSGD) for addressing the data imbalance or label noise problem in deep learning.
Our method is a simple modification to momentum SGD where we assign an individual importance weight to each sample in the mini-batch.
ABSGD is flexible enough to combine with other robust losses without any additional cost.
arXiv Detail & Related papers (2020-12-13T03:41:52Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.