論文の概要: GeoNLF: Geometry guided Pose-Free Neural LiDAR Fields
- arxiv url: http://arxiv.org/abs/2407.05597v1
- Date: Mon, 8 Jul 2024 04:19:49 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-09 17:10:02.862134
- Title: GeoNLF: Geometry guided Pose-Free Neural LiDAR Fields
- Title(参考訳): GeoNLF:Geometry Guideed Pose-Free Neural LiDAR Fields
- Authors: Weiyi Xue, Zehan Zheng, Fan Lu, Haiyun Wei, Guang Chen, Changjun Jiang,
- Abstract要約: 本稿では, 交互にグローバルなニューラル再構成と純幾何学的ポーズ最適化を行うハイブリッドフレームワークを提案する。
NuScenesとKITTI-360データセットの実験は、新しいビュー合成とマルチビュー登録の両方においてGeoNLFの優位性を実証している。
- 参考スコア(独自算出の注目度): 10.753993328978542
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Although recent efforts have extended Neural Radiance Fields (NeRF) into LiDAR point cloud synthesis, the majority of existing works exhibit a strong dependence on precomputed poses. However, point cloud registration methods struggle to achieve precise global pose estimation, whereas previous pose-free NeRFs overlook geometric consistency in global reconstruction. In light of this, we explore the geometric insights of point clouds, which provide explicit registration priors for reconstruction. Based on this, we propose Geometry guided Neural LiDAR Fields(GeoNLF), a hybrid framework performing alternately global neural reconstruction and pure geometric pose optimization. Furthermore, NeRFs tend to overfit individual frames and easily get stuck in local minima under sparse-view inputs. To tackle this issue, we develop a selective-reweighting strategy and introduce geometric constraints for robust optimization. Extensive experiments on NuScenes and KITTI-360 datasets demonstrate the superiority of GeoNLF in both novel view synthesis and multi-view registration of low-frequency large-scale point clouds.
- Abstract(参考訳): 近年、Neural Radiance Fields (NeRF) をLiDAR点雲合成に拡張しているが、既存の研究の大部分は事前計算されたポーズに強く依存している。
しかし、点雲登録法は正確な大域的ポーズ推定を達成するのに苦労する一方、以前のポーズのないNeRFは大域的再構成における幾何的整合性を見落としている。
これを踏まえ、我々は点雲の幾何学的洞察を探求し、復元のための明示的な登録先を提供する。
そこで本研究では, 交互にグローバルなニューラル再構成と純粋幾何学的ポーズ最適化を行うハイブリッドフレームワークであるGeometry Guided Neural LiDAR Fields(GeoNLF)を提案する。
さらに、NeRFは個々のフレームに過度に適合し、スパースビュー入力下では局所的なミニマで簡単に立ち往生する傾向にある。
この問題に対処するために、選択的リウェイト戦略を開発し、ロバストな最適化のための幾何的制約を導入する。
NuScenes と KITTI-360 データセットの大規模な実験は、GeoNLF の新規なビュー合成と低周波大規模点雲のマルチビュー登録における優位性を実証している。
関連論文リスト
- SGCNeRF: Few-Shot Neural Rendering via Sparse Geometric Consistency Guidance [106.0057551634008]
FreeNeRFは暗黙の幾何正規化を統合することでこの制限を克服しようとする。
新しい研究は、新しい特徴マッチングに基づくスパース幾何正規化モジュールを導入する。
モジュールは、高周波キーポイントをピンポイントすることで、詳細の完全性を保護する。
論文 参考訳(メタデータ) (2024-04-01T08:37:57Z) - Stable Surface Regularization for Fast Few-Shot NeRF [76.00444039563581]
我々はAnnealing Signed Distance Function (ASDF) と呼ばれる安定表面正規化手法を開発した。
SDFの異なるレベルセットを形成するためには、アイコンの損失が密集した訓練信号を必要とすることが観察され、数発の訓練で低忠実度結果が得られた。
提案手法は、既存の数発の新規ビュー合成法よりも最大45倍高速である。
論文 参考訳(メタデータ) (2024-03-29T05:39:47Z) - DeepRicci: Self-supervised Graph Structure-Feature Co-Refinement for
Alleviating Over-squashing [72.70197960100677]
グラフ構造学習(GSL)はグラフニューラルネットワーク(GNN)を改良したグラフで強化する上で重要な役割を果たしている。
GSLソリューションは、通常、タスク固有の監督(ノード分類)による構造改善に焦点を当てるか、GNN自体の固有の弱点を見落としている。
本稿では,典型的なGNNにおけるオーバー・スカッシングの問題を効果的に緩和する,自己教師付きグラフ構造-機能共分法について検討する。
論文 参考訳(メタデータ) (2024-01-23T14:06:08Z) - NeuSurf: On-Surface Priors for Neural Surface Reconstruction from Sparse
Input Views [41.03837477483364]
本研究では,表面の高度に忠実な再構成を実現するために,地上の事前情報を活用する新しいスパース・ビュー・リコンストラクション・フレームワークを提案する。
具体的には,大域的幾何アライメントと局所的幾何洗練に関するいくつかの制約を設計し,粗い形状と細部を協調的に最適化する。
DTUとBlendedMVSデータセットによる2つの一般的なスパース設定の実験結果は、最先端の手法よりも大幅に改善されたことを示している。
論文 参考訳(メタデータ) (2023-12-21T16:04:45Z) - NeRF-LOAM: Neural Implicit Representation for Large-Scale Incremental
LiDAR Odometry and Mapping [14.433784957457632]
ニューラルドメトリー,ニューラルマッピング,メッシュ再構成の3つのモジュールからなる新しいNeRF-LOAMを提案する。
提案手法は,LiDARデータを用いた大規模環境において,最先端のオドメトリーとマッピング性能を実現するとともに,強力な一般化を実現する。
論文 参考訳(メタデータ) (2023-03-19T16:40:36Z) - GARF:Geometry-Aware Generalized Neural Radiance Field [47.76524984421343]
本稿では,GADS(Geometry-Aware Generalized Neural Radiance Field)戦略を用いたGARF(Geometry-Aware Generalized Neural Radiance Field)を提案する。
筆者らのフレームワークは,画素スケールと幾何学スケールの両方において,わずかに入力画像で見えないシーンを推測する。
屋内および屋外のデータセットの実験では、GARFはレンダリング品質と3次元幾何推定を改善しながら、サンプルを25%以上削減している。
論文 参考訳(メタデータ) (2022-12-05T14:00:59Z) - MonoSDF: Exploring Monocular Geometric Cues for Neural Implicit Surface
Reconstruction [72.05649682685197]
最先端のニューラル暗黙法は、多くの入力ビューから単純なシーンの高品質な再構築を可能にする。
これは主に、十分な制約を提供していないRGB再構築損失の固有の曖昧さによって引き起こされる。
近年の単分子形状予測の分野での進歩に触発され, ニューラルな暗黙的表面再構成の改善にこれらの方法が役立つかを探究する。
論文 参考訳(メタデータ) (2022-06-01T17:58:15Z) - PVSeRF: Joint Pixel-, Voxel- and Surface-Aligned Radiance Field for
Single-Image Novel View Synthesis [52.546998369121354]
シングルビューRGB画像からニューラル放射場を再構成する学習フレームワークPVSeRFを提案する。
本稿では,明示的な幾何学的推論を取り入れ,放射場予測のための画素アラインな特徴と組み合わせることを提案する。
このような幾何学的特徴の導入は、外観と幾何学の絡み合いを改善するのに有効であることを示す。
論文 参考訳(メタデータ) (2022-02-10T07:39:47Z) - High-Order Residual Network for Light Field Super-Resolution [39.93400777363467]
可視光カメラは通常、異なる視点から情報を取得するために、SAIの空間分解能を犠牲にする。
そこで本稿では,光場から階層的に幾何学的特徴を学習するための新しい高次残差ネットワークを提案する。
提案手法は,挑戦的領域においても高品質な再構成が可能であり,定量化と視覚的評価の両面から,最先端の単一画像やLF再構成よりも優れる。
論文 参考訳(メタデータ) (2020-03-29T18:06:05Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。