論文の概要: LiDAR4D: Dynamic Neural Fields for Novel Space-time View LiDAR Synthesis
- arxiv url: http://arxiv.org/abs/2404.02742v1
- Date: Wed, 3 Apr 2024 13:39:29 GMT
- ステータス: 処理完了
- システム内更新日: 2024-04-04 17:11:28.119547
- Title: LiDAR4D: Dynamic Neural Fields for Novel Space-time View LiDAR Synthesis
- Title(参考訳): LiDAR4D:新しい時空ビューLiDAR合成のための動的ニューラルネットワーク
- Authors: Zehan Zheng, Fan Lu, Weiyi Xue, Guang Chen, Changjun Jiang,
- Abstract要約: 我々は,新しい時空LiDARビュー合成のための微分可能なLiDAR専用フレームワークLiDAR4Dを提案する。
空間幅と大規模特性を考慮した4次元ハイブリッド表現を多平面・格子特徴と組み合わせて設計する。
LiDAR点雲の現実的な合成のために、領域横断パターンを保存するために、レイドロップ確率のグローバル最適化を取り入れる。
- 参考スコア(独自算出の注目度): 11.395101473757443
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Although neural radiance fields (NeRFs) have achieved triumphs in image novel view synthesis (NVS), LiDAR NVS remains largely unexplored. Previous LiDAR NVS methods employ a simple shift from image NVS methods while ignoring the dynamic nature and the large-scale reconstruction problem of LiDAR point clouds. In light of this, we propose LiDAR4D, a differentiable LiDAR-only framework for novel space-time LiDAR view synthesis. In consideration of the sparsity and large-scale characteristics, we design a 4D hybrid representation combined with multi-planar and grid features to achieve effective reconstruction in a coarse-to-fine manner. Furthermore, we introduce geometric constraints derived from point clouds to improve temporal consistency. For the realistic synthesis of LiDAR point clouds, we incorporate the global optimization of ray-drop probability to preserve cross-region patterns. Extensive experiments on KITTI-360 and NuScenes datasets demonstrate the superiority of our method in accomplishing geometry-aware and time-consistent dynamic reconstruction. Codes are available at https://github.com/ispc-lab/LiDAR4D.
- Abstract(参考訳): ニューラル・ラジオアンス・フィールド(NeRF)はイメージ・ノベル・ビュー・シンセサイザー(NVS)において勝利を収めてきたが、LiDAR NVSはいまだほとんど探索されていない。
従来のLiDAR NVS法は、LiDAR点雲の動的性質と大規模再構成問題を無視しながら、イメージNVS法から単純なシフトを用いる。
そこで我々は,新しい時空LiDARビュー合成のための微分可能なLiDAR専用フレームワークLiDAR4Dを提案する。
空間幅と大規模特性を考慮した4次元ハイブリッド表現を多平面・格子特徴と組み合わせて設計し, 粗大から粗大に効率的な再構成を実現する。
さらに,点雲から導出される幾何的制約を導入し,時間的整合性を改善する。
LiDAR点雲の現実的な合成のために、領域横断パターンを保存するために、レイドロップ確率のグローバル最適化を取り入れる。
KITTI-360とNuScenesデータセットの大規模な実験は、幾何学的認識と時間一貫性のある動的再構成を実現する上で、我々の手法の優位性を実証している。
コードはhttps://github.com/ispc-lab/LiDAR4Dで入手できる。
関連論文リスト
- LiDAR-GS:Real-time LiDAR Re-Simulation using Gaussian Splatting [50.808933338389686]
LiDARシミュレーションは、自動運転におけるクローズドループシミュレーションにおいて重要な役割を果たす。
都市景観におけるLiDARセンサスキャンをリアルタイムに再現するために,最初のLiDARガウス法であるLiDAR-GSを提案する。
我々の手法は、深度、強度、レイドロップチャンネルを同時に再現することに成功し、公開可能な大規模シーンデータセットにおけるフレームレートと品質の両方のレンダリング結果を達成する。
論文 参考訳(メタデータ) (2024-10-07T15:07:56Z) - GeoNLF: Geometry guided Pose-Free Neural LiDAR Fields [10.753993328978542]
本稿では, 交互にグローバルなニューラル再構成と純幾何学的ポーズ最適化を行うハイブリッドフレームワークを提案する。
NuScenesとKITTI-360データセットの実験は、新しいビュー合成とマルチビュー登録の両方においてGeoNLFの優位性を実証している。
論文 参考訳(メタデータ) (2024-07-08T04:19:49Z) - PC-NeRF: Parent-Child Neural Radiance Fields Using Sparse LiDAR Frames
in Autonomous Driving Environments [3.1969023045814753]
親子ニューラルレイディアンス場(PC-NeRF)と呼ばれる3次元シーン再構成と新しいビュー合成フレームワークを提案する。
PC-NeRFは、シーン、セグメント、ポイントレベルを含む階層的な空間分割とマルチレベルシーン表現を実装している。
広範にわたる実験により,PC-NeRFは大規模シーンにおける高精度なLiDARビュー合成と3次元再構成を実現することが証明された。
論文 参考訳(メタデータ) (2024-02-14T17:16:39Z) - NeVRF: Neural Video-based Radiance Fields for Long-duration Sequences [53.8501224122952]
本稿では,新しいニューラルビデオベース放射場(NeVRF)の表現を提案する。
NeVRFは、画像ベースのレンダリングを備えたニューラルラディアンスフィールドをマージし、長期のダイナミックな内向きシーンにおけるフォトリアリスティックなノベルビュー合成をサポートする。
本実験は,NeVRFが長期化シーケンスレンダリング,シーケンシャルデータ再構成,コンパクトデータストレージの実現に有効であることを示す。
論文 参考訳(メタデータ) (2023-12-10T11:14:30Z) - UltraLiDAR: Learning Compact Representations for LiDAR Completion and
Generation [51.443788294845845]
我々は、シーンレベルのLiDAR補完、LiDAR生成、LiDAR操作のためのデータ駆動フレームワークであるUltraLiDARを提案する。
スパース点雲の表現を高密度点雲の表現に合わせることで、スパース点雲を密度化できることが示される。
個別のコードブック上で事前学習を行うことで、多種多様な現実的なLiDARポイントクラウドを自動走行のために生成できます。
論文 参考訳(メタデータ) (2023-11-02T17:57:03Z) - Neural LiDAR Fields for Novel View Synthesis [80.45307792404685]
本稿では,LiDAR計測からニューラルネットワークシーンの表現を最適化する手法であるLiDAR(NFL)について述べる。
NFLは、ニューラルネットワークのレンダリングパワーと、LiDARセンシングプロセスの詳細な物理的動機付けモデルを組み合わせる。
合成されたビューの改良されたリアリズムは、ドメインギャップを実際のスキャンに狭め、より良い登録とセマンティックセグメンテーション性能に変換することを示す。
論文 参考訳(メタデータ) (2023-05-02T17:55:38Z) - LiDAR-NeRF: Novel LiDAR View Synthesis via Neural Radiance Fields [112.62936571539232]
本稿では,LiDARセンサのための新しいビュー合成手法を提案する。
スタイルトランスファーニューラルネットワークを用いた従来のモデルベースLiDARシミュレータは、新しいビューのレンダリングに応用できる。
ニューラル放射場(NeRF)を用いて幾何学と3D点の属性の連成学習を容易にする。
論文 参考訳(メタデータ) (2023-04-20T15:44:37Z) - NeRF-LOAM: Neural Implicit Representation for Large-Scale Incremental
LiDAR Odometry and Mapping [14.433784957457632]
ニューラルドメトリー,ニューラルマッピング,メッシュ再構成の3つのモジュールからなる新しいNeRF-LOAMを提案する。
提案手法は,LiDARデータを用いた大規模環境において,最先端のオドメトリーとマッピング性能を実現するとともに,強力な一般化を実現する。
論文 参考訳(メタデータ) (2023-03-19T16:40:36Z) - InfoNeRF: Ray Entropy Minimization for Few-Shot Neural Volume Rendering [55.70938412352287]
ニューラルな暗黙表現に基づく数ショットの新規ビュー合成のための情報理論正規化手法を提案する。
提案手法は,不十分な視点で発生する潜在的な復元の不整合を最小化する。
複数の標準ベンチマークにおいて,既存のニューラルビュー合成手法と比較して一貫した性能向上を実現している。
論文 参考訳(メタデータ) (2021-12-31T11:56:01Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。