論文の概要: New Directions in Text Classification Research: Maximizing The Performance of Sentiment Classification from Limited Data
- arxiv url: http://arxiv.org/abs/2407.05627v1
- Date: Mon, 8 Jul 2024 05:42:29 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-09 17:00:01.915128
- Title: New Directions in Text Classification Research: Maximizing The Performance of Sentiment Classification from Limited Data
- Title(参考訳): テキスト分類研究における新たな方向性:限定データを用いた知覚分類の性能の最大化
- Authors: Surya Agustian, Muhammad Irfan Syah, Nurul Fatiara, Rahmad Abdillah,
- Abstract要約: ベンチマークデータセットは、Kaesang Pangarep氏がPSIの議長として任命した問題に関するデータをトレーニングし、テストするためのものだ。
公式スコアはF1スコアであり、正、負、中立の3つのクラスで精度とリコールのバランスをとる。
スコアリング(ベースラインと最適化)はどちらもSVMメソッドを使用し、従来の機械学習手法では最先端と広く報告されている。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The stakeholders' needs in sentiment analysis for various issues, whether positive or negative, are speed and accuracy. One new challenge in sentiment analysis tasks is the limited training data, which often leads to suboptimal machine learning models and poor performance on test data. This paper discusses the problem of text classification based on limited training data (300 to 600 samples) into three classes: positive, negative, and neutral. A benchmark dataset is provided for training and testing data on the issue of Kaesang Pangarep's appointment as Chairman of PSI. External data for aggregation and augmentation purposes are provided, consisting of two datasets: the topic of Covid Vaccination sentiment and an open topic. The official score used is the F1-score, which balances precision and recall among the three classes, positive, negative, and neutral. A baseline score is provided as a reference for researchers for unoptimized classification methods. The optimized score is provided as a reference for the target score to be achieved by any proposed method. Both scoring (baseline and optimized) use the SVM method, which is widely reported as the state-of-the-art in conventional machine learning methods. The F1-scores achieved by the baseline and optimized methods are 40.83% and 51.28%, respectively.
- Abstract(参考訳): ポジティブでもネガティブでも、様々な問題に対する利害関係者の感情分析の必要性は、スピードと正確性である。
感情分析タスクにおける新しい課題の1つは、限られたトレーニングデータである。
本稿では,限られた学習データ(300~600サンプル)に基づくテキスト分類の問題について,正,負,中性の3つのクラスに分類する。
ベンチマークデータセットは、Kaesang Pangarep氏がPSIの議長として任命した問題に関するデータをトレーニングし、テストするためのものだ。
集約と拡張の目的のための外部データは、Covid Vaccinationの感情に関するトピックとオープンなトピックの2つのデータセットで構成されている。
公式スコアはF1スコアであり、正、負、中立の3つのクラスで精度とリコールのバランスをとる。
ベースラインスコアは、最適化されていない分類方法の研究者の基準として提供される。
最適化スコアは、提案手法によって達成される目標スコアの基準として提供される。
スコアリング(ベースラインと最適化)はどちらもSVMメソッドを使用し、従来の機械学習手法では最先端と広く報告されている。
ベースラインと最適化手法によって達成されたF1スコアはそれぞれ40.83%と51.28%である。
関連論文リスト
- Self-Training with Pseudo-Label Scorer for Aspect Sentiment Quad Prediction [54.23208041792073]
Aspect Sentiment Quad Prediction (ASQP) は、与えられたレビューに対して全てのクワッド(アスペクト項、アスペクトカテゴリー、意見項、感情極性)を予測することを目的としている。
ASQPタスクにおける重要な課題はラベル付きデータの不足であり、既存のメソッドのパフォーマンスを制限している。
そこで我々は,擬似ラベルスコアラーを用いた自己学習フレームワークを提案し,レビューと擬似ラベルの一致をスコアラーが評価する。
論文 参考訳(メタデータ) (2024-06-26T05:30:21Z) - Class-Imbalanced Semi-Supervised Learning for Large-Scale Point Cloud
Semantic Segmentation via Decoupling Optimization [64.36097398869774]
半教師付き学習(SSL)は大規模3Dシーン理解のための活発な研究課題である。
既存のSSLベースのメソッドは、クラス不均衡とポイントクラウドデータのロングテール分布による厳しいトレーニングバイアスに悩まされている。
本稿では,特徴表現学習と分類器を別の最適化方法で切り離してバイアス決定境界を効果的にシフトする,新しいデカップリング最適化フレームワークを提案する。
論文 参考訳(メタデータ) (2024-01-13T04:16:40Z) - Blueprinting the Future: Automatic Item Categorization using
Hierarchical Zero-Shot and Few-Shot Classifiers [6.907552533477328]
本研究では,ゼロショットおよび少数ショット生成事前学習変換器(GPT)を用いた階層的項目分類手法を提案する。
検査ブループリントの階層的な性質はシームレスにナビゲートされ、複数のレベルの項目を階層的に分類することができる。
人工データによる初期シミュレーションは、この方法の有効性を示し、F1スコアで測定された平均精度92.91%を達成する。
論文 参考訳(メタデータ) (2023-12-06T15:51:49Z) - DST-Det: Simple Dynamic Self-Training for Open-Vocabulary Object Detection [72.25697820290502]
この研究は、ゼロショット分類によって潜在的に新しいクラスを特定するための単純かつ効率的な戦略を導入する。
このアプローチは、アノテーションやデータセット、再学習を必要とせずに、新しいクラスのリコールと精度を高めるセルフトレーニング戦略として言及する。
LVIS、V3Det、COCOを含む3つのデータセットに対する実証的な評価は、ベースラインのパフォーマンスを大幅に改善したことを示している。
論文 参考訳(メタデータ) (2023-10-02T17:52:24Z) - Revisiting Long-tailed Image Classification: Survey and Benchmarks with
New Evaluation Metrics [88.39382177059747]
メトリクスのコーパスは、長い尾の分布で学習するアルゴリズムの正確性、堅牢性、およびバウンダリを測定するために設計されている。
ベンチマークに基づいて,CIFAR10およびCIFAR100データセット上での既存手法の性能を再評価する。
論文 参考訳(メタデータ) (2023-02-03T02:40:54Z) - CAFA: Class-Aware Feature Alignment for Test-Time Adaptation [50.26963784271912]
テスト時間適応(TTA)は、テスト時にラベルのないデータにモデルを適応させることによって、この問題に対処することを目的としている。
本稿では,クラス認識特徴アライメント(CAFA, Class-Aware Feature Alignment)と呼ばれる単純な機能アライメント損失を提案する。
論文 参考訳(メタデータ) (2022-06-01T03:02:07Z) - CheckSel: Efficient and Accurate Data-valuation Through Online
Checkpoint Selection [3.321404824316694]
本稿では,データアセスメントとサブセット選択の問題に対して,新しい2段階の解を提案する。
フェーズ1は、SGDライクなトレーニングアルゴリズムから代表チェックポイントを選択し、フェーズ2で使用して、近似トレーニングデータ値を推定する。
実験結果から,提案アルゴリズムは試験精度において,最近のベースライン法を最大30%上回る性能を示した。
論文 参考訳(メタデータ) (2022-03-14T02:06:52Z) - Semi-Supervised Semantic Segmentation via Adaptive Equalization Learning [20.66927648806676]
適応等化学習(AEL)と呼ばれる半教師付きセマンティックセグメンテーションのための新しいフレームワークを提案する。
AELは、高い評価と悪い評価を受けたカテゴリのトレーニングのバランスをとり、信頼性銀行はカテゴリワイドのパフォーマンスを追跡する。
AELは、CityscapesとPascal VOCベンチマークにおいて最先端の手法よりも優れている。
論文 参考訳(メタデータ) (2021-10-11T17:59:55Z) - A new weakly supervised approach for ALS point cloud semantic
segmentation [1.4620086904601473]
本稿では,ALS点雲のセマンティックセグメンテーションのための,ディープラーニングに基づく弱教師付きフレームワークを提案する。
不完全でスパースなラベルの対象となるラベルのないデータから潜在的情報を利用する。
本手法は, 総合精度が83.0%, 平均F1スコアが70.0%であり, それぞれ6.9%, 12.8%増加した。
論文 参考訳(メタデータ) (2021-10-04T14:00:23Z) - Out-of-Vocabulary Entities in Link Prediction [1.9036571490366496]
リンク予測はしばしば、埋め込みの品質を評価するプロキシとして使用される。
ベンチマークはアルゴリズムの公正な比較に欠かせないため、より良いソリューションを開発するための確固たる基盤を提供するため、その品質が確実に確保される。
我々は、そのようなエンティティの発見と削除のためのアプローチの実装を提供し、データセットWN18RR、FB15K-237、YAGO3-10の修正版を提供する。
論文 参考訳(メタデータ) (2021-05-26T12:58:18Z) - Uncertainty-aware Self-training for Text Classification with Few Labels [54.13279574908808]
本研究は,アノテーションのボトルネックを軽減するための半教師あり学習手法の1つとして,自己学習について研究する。
本稿では,基礎となるニューラルネットワークの不確実性推定を取り入れて,自己学習を改善する手法を提案する。
本手法では,クラス毎に20~30個のラベル付きサンプルをトレーニングに利用し,完全教師付き事前学習言語モデルの3%以内で検証を行う。
論文 参考訳(メタデータ) (2020-06-27T08:13:58Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。