論文の概要: Deep Learning-based Anomaly Detection and Log Analysis for Computer Networks
- arxiv url: http://arxiv.org/abs/2407.05639v1
- Date: Mon, 8 Jul 2024 06:07:51 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-09 16:50:12.384021
- Title: Deep Learning-based Anomaly Detection and Log Analysis for Computer Networks
- Title(参考訳): ディープラーニングによるコンピュータネットワークの異常検出とログ解析
- Authors: Shuzhan Wang, Ruxue Jiang, Zhaoqi Wang, Yan Zhou,
- Abstract要約: 本稿では,孤立林,GAN,トランスフォーマーを統合した新しい融合モデルを提案する。
このモデルは誤報率を低減しつつ、異常検出の精度を大幅に向上させる。
また、ログ解析タスクでもうまく機能し、異常な振る舞いを素早く識別することができる。
- 参考スコア(独自算出の注目度): 5.809158072574843
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Computer network anomaly detection and log analysis, as an important topic in the field of network security, has been a key task to ensure network security and system reliability. First, existing network anomaly detection and log analysis methods are often challenged by high-dimensional data and complex network topologies, resulting in unstable performance and high false-positive rates. In addition, traditional methods are usually difficult to handle time-series data, which is crucial for anomaly detection and log analysis. Therefore, we need a more efficient and accurate method to cope with these problems. To compensate for the shortcomings of current methods, we propose an innovative fusion model that integrates Isolation Forest, GAN (Generative Adversarial Network), and Transformer with each other, and each of them plays a unique role. Isolation Forest is used to quickly identify anomalous data points, and GAN is used to generate synthetic data with the real data distribution characteristics to augment the training dataset, while the Transformer is used for modeling and context extraction on time series data. The synergy of these three components makes our model more accurate and robust in anomaly detection and log analysis tasks. We validate the effectiveness of this fusion model in an extensive experimental evaluation. Experimental results show that our model significantly improves the accuracy of anomaly detection while reducing the false alarm rate, which helps to detect potential network problems in advance. The model also performs well in the log analysis task and is able to quickly identify anomalous behaviors, which helps to improve the stability of the system. The significance of this study is that it introduces advanced deep learning techniques, which work anomaly detection and log analysis.
- Abstract(参考訳): ネットワークセキュリティの分野で重要なトピックであるコンピュータネットワーク異常検出とログ解析は,ネットワークセキュリティとシステムの信頼性を確保する上で重要な課題である。
まず、既存のネットワーク異常検出およびログ解析手法は、高次元データと複雑なネットワークトポロジによってしばしば挑戦され、不安定な性能と高い偽陽性率をもたらす。
さらに,従来の手法では時系列データの扱いが困難であり,異常検出やログ解析に欠かせない。
したがって、これらの問題に対処するためには、より効率的かつ正確な方法が必要である。
現状の手法の欠点を補うために,GAN(Generative Adversarial Network)とTransformer(Transformer)を統合した新しい融合モデルを提案し,それぞれがユニークな役割を担っている。
分離フォレストは異常なデータポイントを素早く識別するために使用され、GANは実際のデータ分散特性を持つ合成データを生成するために使用され、Transformerは時系列データに基づくモデリングとコンテキスト抽出に使用される。
これら3つのコンポーネントの相乗効果により、異常検出およびログ解析タスクにおいて、我々のモデルはより正確で堅牢になる。
本研究では,この融合モデルの有効性を実験的に検証した。
実験結果から,本モデルは誤報率を低減しつつ,異常検出の精度を著しく向上し,ネットワークの潜在的な問題を事前に検出するのに役立つことがわかった。
このモデルはログ解析タスクでもうまく機能し、異常な振る舞いを素早く識別することができ、システムの安定性を向上させるのに役立ちます。
本研究の意義は,異常検出とログ解析を行う先進的な深層学習技術を導入することである。
関連論文リスト
- Explainable Online Unsupervised Anomaly Detection for Cyber-Physical Systems via Causal Discovery from Time Series [1.223779595809275]
ニューラルネットワークによるディープラーニングに基づく最先端のアプローチは、異常認識において優れたパフォーマンスを達成する。
本手法はトレーニング効率が向上し,最先端のニューラルネットワークアーキテクチャの精度に優れることを示す。
論文 参考訳(メタデータ) (2024-04-15T15:42:12Z) - Leveraging a Probabilistic PCA Model to Understand the Multivariate
Statistical Network Monitoring Framework for Network Security Anomaly
Detection [64.1680666036655]
確率的生成モデルの観点からPCAに基づく異常検出手法を再検討する。
2つの異なるデータセットを用いて数学的モデルを評価した。
論文 参考訳(メタデータ) (2023-02-02T13:41:18Z) - PULL: Reactive Log Anomaly Detection Based On Iterative PU Learning [58.85063149619348]
本稿では,推定故障時間ウィンドウに基づくリアクティブ異常検出のための反復ログ解析手法PULLを提案する。
我々の評価では、PULLは3つの異なるデータセットで10のベンチマークベースラインを一貫して上回っている。
論文 参考訳(メタデータ) (2023-01-25T16:34:43Z) - A Robust and Explainable Data-Driven Anomaly Detection Approach For
Power Electronics [56.86150790999639]
本稿では,2つの異常検出・分類手法,すなわち行列プロファイルアルゴリズムと異常変換器を提案する。
行列プロファイルアルゴリズムは、ストリーミング時系列データにおけるリアルタイム異常を検出するための一般化可能なアプローチとして適している。
検知器の感度、リコール、検出精度を調整するために、一連のカスタムフィルタが作成され、追加される。
論文 参考訳(メタデータ) (2022-09-23T06:09:35Z) - TranAD: Deep Transformer Networks for Anomaly Detection in Multivariate
Time Series Data [13.864161788250856]
TranADはディープトランスネットワークに基づく異常検出および診断モデルである。
注意に基づくシーケンスエンコーダを使用して、データ内のより広い時間的傾向の知識を迅速に推論する。
TranADは、データと時間効率のトレーニングによる検出と診断のパフォーマンスにおいて、最先端のベースラインメソッドよりも優れています。
論文 参考訳(メタデータ) (2022-01-18T19:41:29Z) - Convolutional generative adversarial imputation networks for
spatio-temporal missing data in storm surge simulations [86.5302150777089]
GAN(Generative Adversarial Imputation Nets)とGANベースの技術は、教師なし機械学習手法として注目されている。
提案手法を Con Conval Generative Adversarial Imputation Nets (Conv-GAIN) と呼ぶ。
論文 参考訳(メタデータ) (2021-11-03T03:50:48Z) - Fast Wireless Sensor Anomaly Detection based on Data Stream in Edge
Computing Enabled Smart Greenhouse [5.716360276016705]
エッジコンピューティングを有効にするスマート温室は、IoT技術の代表的なアプリケーションである。
従来の異常検出アルゴリズムは、無線センサによって生成されたデータストリームの特性を適切に考慮していない。
論文 参考訳(メタデータ) (2021-07-28T13:32:12Z) - A Survey on Anomaly Detection for Technical Systems using LSTM Networks [0.0]
異常は、意図されたシステムの動作から逸脱し、部分的または完全なシステム障害と同様に効率が低下する可能性がある。
本稿では,ディープニューラルネットワーク,特に長期記憶ネットワークを用いた最先端異常検出に関する調査を行う。
調査したアプローチは、アプリケーションシナリオ、データ、異常タイプ、およびさらなるメトリクスに基づいて評価される。
論文 参考訳(メタデータ) (2021-05-28T13:24:40Z) - Including Sparse Production Knowledge into Variational Autoencoders to
Increase Anomaly Detection Reliability [3.867363075280544]
可変オートエンコーダニューラルネットワーク構造におけるラベル異常に関するまれな情報を用いて検討する。
この方法は、精度、正確さ、リコールの点で他の全てのモデルを上回る。
論文 参考訳(メタデータ) (2021-03-24T05:54:12Z) - Robust and Transferable Anomaly Detection in Log Data using Pre-Trained
Language Models [59.04636530383049]
クラウドのような大規模コンピュータシステムにおける異常や障害は、多くのユーザに影響を与える。
システム情報の主要なトラブルシューティングソースとして,ログデータの異常検出のためのフレームワークを提案する。
論文 参考訳(メタデータ) (2021-02-23T09:17:05Z) - TadGAN: Time Series Anomaly Detection Using Generative Adversarial
Networks [73.01104041298031]
TadGANは、GAN(Generative Adversarial Networks)上に構築された教師なしの異常検出手法である。
時系列の時間相関を捉えるために,ジェネレータと批評家のベースモデルとしてLSTMリカレントニューラルネットワークを用いる。
提案手法の性能と一般化性を示すため,いくつかの異常スコアリング手法を検証し,最も適した手法を報告する。
論文 参考訳(メタデータ) (2020-09-16T15:52:04Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。