Multi-Fidelity Bayesian Neural Network for Uncertainty Quantification in Transonic Aerodynamic Loads
- URL: http://arxiv.org/abs/2407.05684v1
- Date: Mon, 8 Jul 2024 07:34:35 GMT
- Title: Multi-Fidelity Bayesian Neural Network for Uncertainty Quantification in Transonic Aerodynamic Loads
- Authors: Andrea Vaiuso, Gabriele Immordino, Marcello Righi, Andrea Da Ronch,
- Abstract summary: This paper implements a multi-fidelity Bayesian neural network model that applies transfer learning to fuse data generated by models at different fidelities.
The results demonstrate that the multi-fidelity Bayesian model outperforms the state-of-the-art Co-Kriging in terms of overall accuracy and robustness on unseen data.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Multi-fidelity models are becoming more prevalent in engineering, particularly in aerospace, as they combine both the computational efficiency of low-fidelity models with the high accuracy of higher-fidelity simulations. Various state-of-the-art techniques exist for fusing data from different fidelity sources, including Co-Kriging and transfer learning in neural networks. This paper aims to implement a multi-fidelity Bayesian neural network model that applies transfer learning to fuse data generated by models at different fidelities. Bayesian neural networks use probability distributions over network weights, enabling them to provide predictions along with estimates of their confidence. This approach harnesses the predictive and data fusion capabilities of neural networks while also quantifying uncertainty. The results demonstrate that the multi-fidelity Bayesian model outperforms the state-of-the-art Co-Kriging in terms of overall accuracy and robustness on unseen data.
Related papers
- Practical multi-fidelity machine learning: fusion of deterministic and Bayesian models [0.34592277400656235]
Multi-fidelity machine learning methods integrate scarce, resource-intensive high-fidelity data with abundant but less accurate low-fidelity data.
We propose a practical multi-fidelity strategy for problems spanning low- and high-dimensional domains.
arXiv Detail & Related papers (2024-07-21T10:40:50Z) - Towards Theoretical Understandings of Self-Consuming Generative Models [56.84592466204185]
This paper tackles the emerging challenge of training generative models within a self-consuming loop.
We construct a theoretical framework to rigorously evaluate how this training procedure impacts the data distributions learned by future models.
We present results for kernel density estimation, delivering nuanced insights such as the impact of mixed data training on error propagation.
arXiv Detail & Related papers (2024-02-19T02:08:09Z) - Residual Multi-Fidelity Neural Network Computing [0.0]
We present a residual multi-fidelity computational framework that formulates the correlation between models as a residual function.
We show that dramatic savings in computational cost may be achieved when the output predictions are desired to be accurate within small tolerances.
arXiv Detail & Related papers (2023-10-05T14:43:16Z) - How to Combine Variational Bayesian Networks in Federated Learning [0.0]
Federated learning enables multiple data centers to train a central model collaboratively without exposing any confidential data.
deterministic models are capable of performing high prediction accuracy, their lack of calibration and capability to quantify uncertainty is problematic for safety-critical applications.
We study the effects of various aggregation schemes for variational Bayesian neural networks.
arXiv Detail & Related papers (2022-06-22T07:53:12Z) - Multi-fidelity Hierarchical Neural Processes [79.0284780825048]
Multi-fidelity surrogate modeling reduces the computational cost by fusing different simulation outputs.
We propose Multi-fidelity Hierarchical Neural Processes (MF-HNP), a unified neural latent variable model for multi-fidelity surrogate modeling.
We evaluate MF-HNP on epidemiology and climate modeling tasks, achieving competitive performance in terms of accuracy and uncertainty estimation.
arXiv Detail & Related papers (2022-06-10T04:54:13Z) - Multi-fidelity regression using artificial neural networks: efficient
approximation of parameter-dependent output quantities [0.17499351967216337]
We present the use of artificial neural networks applied to multi-fidelity regression problems.
The introduced models are compared against a traditional multi-fidelity scheme, co-kriging.
We also show an application of multi-fidelity regression to an engineering problem.
arXiv Detail & Related papers (2021-02-26T11:29:00Z) - Improving Uncertainty Calibration via Prior Augmented Data [56.88185136509654]
Neural networks have proven successful at learning from complex data distributions by acting as universal function approximators.
They are often overconfident in their predictions, which leads to inaccurate and miscalibrated probabilistic predictions.
We propose a solution by seeking out regions of feature space where the model is unjustifiably overconfident, and conditionally raising the entropy of those predictions towards that of the prior distribution of the labels.
arXiv Detail & Related papers (2021-02-22T07:02:37Z) - Unlabelled Data Improves Bayesian Uncertainty Calibration under
Covariate Shift [100.52588638477862]
We develop an approximate Bayesian inference scheme based on posterior regularisation.
We demonstrate the utility of our method in the context of transferring prognostic models of prostate cancer across globally diverse populations.
arXiv Detail & Related papers (2020-06-26T13:50:19Z) - Network Diffusions via Neural Mean-Field Dynamics [52.091487866968286]
We propose a novel learning framework for inference and estimation problems of diffusion on networks.
Our framework is derived from the Mori-Zwanzig formalism to obtain an exact evolution of the node infection probabilities.
Our approach is versatile and robust to variations of the underlying diffusion network models.
arXiv Detail & Related papers (2020-06-16T18:45:20Z) - Diversity inducing Information Bottleneck in Model Ensembles [73.80615604822435]
In this paper, we target the problem of generating effective ensembles of neural networks by encouraging diversity in prediction.
We explicitly optimize a diversity inducing adversarial loss for learning latent variables and thereby obtain diversity in the output predictions necessary for modeling multi-modal data.
Compared to the most competitive baselines, we show significant improvements in classification accuracy, under a shift in the data distribution.
arXiv Detail & Related papers (2020-03-10T03:10:41Z) - On transfer learning of neural networks using bi-fidelity data for
uncertainty propagation [0.0]
We explore the application of transfer learning techniques using training data generated from both high- and low-fidelity models.
In the former approach, a neural network model mapping the inputs to the outputs of interest is trained based on the low-fidelity data.
The high-fidelity data is then used to adapt the parameters of the upper layer(s) of the low-fidelity network, or train a simpler neural network to map the output of the low-fidelity network to that of the high-fidelity model.
arXiv Detail & Related papers (2020-02-11T15:56:11Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.