Uncertainty Quantification for Multi-fidelity Simulations
- URL: http://arxiv.org/abs/2503.08408v1
- Date: Tue, 11 Mar 2025 13:11:18 GMT
- Title: Uncertainty Quantification for Multi-fidelity Simulations
- Authors: Swapnil Kumar,
- Abstract summary: The work focuses on gathering high-fidelity and low-fidelity numerical simulations data using Nektar++ and XFOIL respectively.<n>The utilization of the higher distribution in calculating the Coefficient of lift and drag has demonstrated superior accuracy and precision.<n>To minimize the reliability on high-fidelity numerical simulations in Uncertainty Quantification, a multi-fidelity strategy has been adopted.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The work focuses on gathering high-fidelity and low-fidelity numerical simulations data using Nektar++ (Solver based on Applied Mathematics) and XFOIL respectively. The utilization of the higher polynomial distribution in calculating the Coefficient of lift and drag has demonstrated superior accuracy and precision. Further, Co-kriging Data fusion and Adaptive sampling technique has been used to obtain the precise data predictions for the lift and drag within the confined domain without conducting the costly simulations on HPC clusters. This creates a methodology to quantifying uncertainty in computational fluid dynamics by minimizing the required number of samples. To minimize the reliability on high-fidelity numerical simulations in Uncertainty Quantification, a multi-fidelity strategy has been adopted. The effectiveness of the multi-fidelity deep neural network model has been validated through the approximation of benchmark functions across 1-, 32-, and 100-dimensional, encompassing both linear and nonlinear correlations. The surrogate modelling results showed that multi-fidelity deep neural network model has shown excellent approximation capabilities for the test functions and multi-fidelity deep neural network method has outperformed Co-kriging in effectiveness. In addition to that, multi-fidelity deep neural network model is utilized for the simulation of aleatory uncertainty propagation in 1-, 32-, and 100 dimensional function test, considering both uniform and Gaussian distributions for input uncertainties. The results have shown that multi-fidelity deep neural network model has efficiently predicted the probability density distributions of quantities of interest as well as the statistical moments with precision and accuracy. The Co-Kriging model has exhibited limitations when addressing 32-Dimension problems due to the limitation of memory capacity for storage and manipulation.
Related papers
- Multi-Fidelity Bayesian Neural Network for Uncertainty Quantification in Transonic Aerodynamic Loads [0.0]
This paper implements a multi-fidelity Bayesian neural network model that applies transfer learning to fuse data generated by models at different fidelities.
The results demonstrate that the multi-fidelity Bayesian model outperforms the state-of-the-art Co-Kriging in terms of overall accuracy and robustness on unseen data.
arXiv Detail & Related papers (2024-07-08T07:34:35Z) - The Risk of Federated Learning to Skew Fine-Tuning Features and
Underperform Out-of-Distribution Robustness [50.52507648690234]
Federated learning has the risk of skewing fine-tuning features and compromising the robustness of the model.
We introduce three robustness indicators and conduct experiments across diverse robust datasets.
Our approach markedly enhances the robustness across diverse scenarios, encompassing various parameter-efficient fine-tuning methods.
arXiv Detail & Related papers (2024-01-25T09:18:51Z) - Ensemble models outperform single model uncertainties and predictions
for operator-learning of hypersonic flows [43.148818844265236]
Training scientific machine learning (SciML) models on limited high-fidelity data offers one approach to rapidly predict behaviors for situations that have not been seen before.
High-fidelity data is itself in limited quantity to validate all outputs of the SciML model in unexplored input space.
We extend a DeepONet using three different uncertainty mechanisms: mean-variance estimation, evidential uncertainty, and ensembling.
arXiv Detail & Related papers (2023-10-31T18:07:29Z) - Multi-fidelity Hierarchical Neural Processes [79.0284780825048]
Multi-fidelity surrogate modeling reduces the computational cost by fusing different simulation outputs.
We propose Multi-fidelity Hierarchical Neural Processes (MF-HNP), a unified neural latent variable model for multi-fidelity surrogate modeling.
We evaluate MF-HNP on epidemiology and climate modeling tasks, achieving competitive performance in terms of accuracy and uncertainty estimation.
arXiv Detail & Related papers (2022-06-10T04:54:13Z) - Robust Implicit Networks via Non-Euclidean Contractions [63.91638306025768]
Implicit neural networks show improved accuracy and significant reduction in memory consumption.
They can suffer from ill-posedness and convergence instability.
This paper provides a new framework to design well-posed and robust implicit neural networks.
arXiv Detail & Related papers (2021-06-06T18:05:02Z) - Residual Gaussian Process: A Tractable Nonparametric Bayesian Emulator
for Multi-fidelity Simulations [6.6903363553912305]
A novel additive structure is introduced in which the highest fidelity solution is written as a sum of the lowest fidelity solution and residuals.
The resulting model is equipped with a closed-form solution for the predictive posterior.
It is shown how active learning can be used to enhance the model, especially with a limited computational budget.
arXiv Detail & Related papers (2021-04-08T12:57:46Z) - Multi-fidelity Bayesian Neural Networks: Algorithms and Applications [0.0]
We propose a new class of Bayesian neural networks (BNNs) that can be trained using noisy data of variable fidelity.
We apply them to learn function approximations as well as to solve inverse problems based on partial differential equations (PDEs)
arXiv Detail & Related papers (2020-12-19T02:03:53Z) - Large-scale Neural Solvers for Partial Differential Equations [48.7576911714538]
Solving partial differential equations (PDE) is an indispensable part of many branches of science as many processes can be modelled in terms of PDEs.
Recent numerical solvers require manual discretization of the underlying equation as well as sophisticated, tailored code for distributed computing.
We examine the applicability of continuous, mesh-free neural solvers for partial differential equations, physics-informed neural networks (PINNs)
We discuss the accuracy of GatedPINN with respect to analytical solutions -- as well as state-of-the-art numerical solvers, such as spectral solvers.
arXiv Detail & Related papers (2020-09-08T13:26:51Z) - Communication-Efficient Distributed Stochastic AUC Maximization with
Deep Neural Networks [50.42141893913188]
We study a distributed variable for large-scale AUC for a neural network as with a deep neural network.
Our model requires a much less number of communication rounds and still a number of communication rounds in theory.
Our experiments on several datasets show the effectiveness of our theory and also confirm our theory.
arXiv Detail & Related papers (2020-05-05T18:08:23Z) - Diversity inducing Information Bottleneck in Model Ensembles [73.80615604822435]
In this paper, we target the problem of generating effective ensembles of neural networks by encouraging diversity in prediction.
We explicitly optimize a diversity inducing adversarial loss for learning latent variables and thereby obtain diversity in the output predictions necessary for modeling multi-modal data.
Compared to the most competitive baselines, we show significant improvements in classification accuracy, under a shift in the data distribution.
arXiv Detail & Related papers (2020-03-10T03:10:41Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.