Gait Patterns as Biomarkers: A Video-Based Approach for Classifying Scoliosis
- URL: http://arxiv.org/abs/2407.05726v3
- Date: Fri, 23 Aug 2024 18:09:55 GMT
- Title: Gait Patterns as Biomarkers: A Video-Based Approach for Classifying Scoliosis
- Authors: Zirui Zhou, Junhao Liang, Zizhao Peng, Chao Fan, Fengwei An, Shiqi Yu,
- Abstract summary: Scoliosis presents significant diagnostic challenges, particularly in adolescents.
Traditional diagnostic and follow-up methods face limitations due to the need for clinical expertise and the risk of radiation exposure.
We introduce a novel video-based, non-invasive method for scoliosis classification using gait analysis.
- Score: 10.335383345968966
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Scoliosis presents significant diagnostic challenges, particularly in adolescents, where early detection is crucial for effective treatment. Traditional diagnostic and follow-up methods, which rely on physical examinations and radiography, face limitations due to the need for clinical expertise and the risk of radiation exposure, thus restricting their use for widespread early screening. In response, we introduce a novel video-based, non-invasive method for scoliosis classification using gait analysis, effectively circumventing these limitations. This study presents Scoliosis1K, the first large-scale dataset specifically designed for video-based scoliosis classification, encompassing over one thousand adolescents. Leveraging this dataset, we developed ScoNet, an initial model that faced challenges in handling the complexities of real-world data. This led to the development of ScoNet-MT, an enhanced model incorporating multi-task learning, which demonstrates promising diagnostic accuracy for practical applications. Our findings demonstrate that gait can serve as a non-invasive biomarker for scoliosis, revolutionizing screening practices through deep learning and setting a precedent for non-invasive diagnostic methodologies. The dataset and code are publicly available at https://zhouzi180.github.io/Scoliosis1K/.
Related papers
- Shape Matters: Detecting Vertebral Fractures Using Differentiable
Point-Based Shape Decoding [51.38395069380457]
Degenerative spinal pathologies are highly prevalent among the elderly population.
Timely diagnosis of osteoporotic fractures and other degenerative deformities facilitates proactive measures to mitigate the risk of severe back pain and disability.
In this study, we specifically explore the use of shape auto-encoders for vertebrae.
arXiv Detail & Related papers (2023-12-08T18:11:22Z) - Novel Pipeline for Diagnosing Acute Lymphoblastic Leukemia Sensitive to
Related Biomarkers [0.0]
Acute Lymphoblastic Leukemia (ALL) is one of the most common types of childhood blood cancer.
Examining the blood smear images of these patients is one of the methods used by expert doctors to diagnose this disease.
Deep learning-based methods have numerous applications in medical fields.
arXiv Detail & Related papers (2023-07-08T16:46:16Z) - Deep Reinforcement Learning Framework for Thoracic Diseases
Classification via Prior Knowledge Guidance [49.87607548975686]
The scarcity of labeled data for related diseases poses a huge challenge to an accurate diagnosis.
We propose a novel deep reinforcement learning framework, which introduces prior knowledge to direct the learning of diagnostic agents.
Our approach's performance was demonstrated using the well-known NIHX-ray 14 and CheXpert datasets.
arXiv Detail & Related papers (2023-06-02T01:46:31Z) - Scoliosis Detection using Deep Neural Network [0.0]
Scoliosis is a sideways curvature of the spine that most often is diagnosed among young teenagers.
Current gold standard to detect and estimate scoliosis is to manually examine the spinal anterior-posterior X-ray images.
Deep learning has shown amazing achievements in automatic spinal curvature estimation.
arXiv Detail & Related papers (2022-10-31T12:52:04Z) - SpineOne: A One-Stage Detection Framework for Degenerative Discs and
Vertebrae [54.751251046196494]
We propose a one-stage detection framework termed SpineOne to simultaneously localize and classify degenerative discs and vertebrae from MRI slices.
SpineOne is built upon the following three key techniques: 1) a new design of the keypoint heatmap to facilitate simultaneous keypoint localization and classification; 2) the use of attention modules to better differentiate the representations between discs and vertebrae; and 3) a novel gradient-guided objective association mechanism to associate multiple learning objectives at the later training stage.
arXiv Detail & Related papers (2021-10-28T12:59:06Z) - Knee Osteoarthritis Severity Prediction using an Attentive Multi-Scale
Deep Convolutional Neural Network [8.950918531231158]
This paper presents a deep learning-based framework, namely OsteoHRNet, that automatically assesses the Knee Osteoarthritis severity in terms of Kellgren and Lawrence grade classification from X-rays.
Our proposed model has achieved the best multiclass accuracy of 71.74% and MAE of 0.311 on the baseline cohort of the OAI dataset.
arXiv Detail & Related papers (2021-06-27T17:29:46Z) - Novel Deep Learning Architecture for Heart Disease Prediction using
Convolutional Neural Network [0.0]
Heart disease is one of the deadliest diseases which is hampering the lives of many people around the world.
This paper proposes a novel deep learning architecture using a 1D convolutional neural network for classification between healthy and non-healthy persons.
The proposed network achieves over 97% training accuracy and 96% test accuracy on the dataset.
arXiv Detail & Related papers (2021-05-22T22:00:57Z) - Many-to-One Distribution Learning and K-Nearest Neighbor Smoothing for
Thoracic Disease Identification [83.6017225363714]
deep learning has become the most powerful computer-aided diagnosis technology for improving disease identification performance.
For chest X-ray imaging, annotating large-scale data requires professional domain knowledge and is time-consuming.
In this paper, we propose many-to-one distribution learning (MODL) and K-nearest neighbor smoothing (KNNS) methods to improve a single model's disease identification performance.
arXiv Detail & Related papers (2021-02-26T02:29:30Z) - Select-ProtoNet: Learning to Select for Few-Shot Disease Subtype
Prediction [55.94378672172967]
We focus on few-shot disease subtype prediction problem, identifying subgroups of similar patients.
We introduce meta learning techniques to develop a new model, which can extract the common experience or knowledge from interrelated clinical tasks.
Our new model is built upon a carefully designed meta-learner, called Prototypical Network, that is a simple yet effective meta learning machine for few-shot image classification.
arXiv Detail & Related papers (2020-09-02T02:50:30Z) - A Smartphone-based System for Real-time Early Childhood Caries Diagnosis [76.71303610807156]
Early childhood caries (ECC) is the most common, yet preventable chronic disease in children under the age of 6.
In this study, we propose a multistage deep learning-based system for cavity detection.
We integrate the deep learning system into an easy-to-use mobile application that can diagnose ECC from an early stage and provide real-time results to untrained users.
arXiv Detail & Related papers (2020-08-17T21:11:19Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.