Leveraging Gait Patterns as Biomarkers: An attention-guided Deep Multiple Instance Learning Network for Scoliosis Classification
- URL: http://arxiv.org/abs/2504.03894v1
- Date: Fri, 04 Apr 2025 19:35:33 GMT
- Title: Leveraging Gait Patterns as Biomarkers: An attention-guided Deep Multiple Instance Learning Network for Scoliosis Classification
- Authors: Haiqing Li, Yuzhi Guo, Feng Jiang, Qifeng Zhou, Hehuan Ma, Junzhou Huang,
- Abstract summary: Scoliosis is a spinal curvature disorder that is difficult to detect early and can compress the chest cavity.<n>Traditional scoliosis detection methods rely on clinical expertise, and X-ray imaging poses radiation risks.<n>We propose an Attention-Guided Deep Multi-Instance Learning method (Gait-MIL) to effectively capture discriminative features from gait patterns.
- Score: 36.18242379097044
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Scoliosis is a spinal curvature disorder that is difficult to detect early and can compress the chest cavity, impacting respiratory function and cardiac health. Especially for adolescents, delayed detection and treatment result in worsening compression. Traditional scoliosis detection methods heavily rely on clinical expertise, and X-ray imaging poses radiation risks, limiting large-scale early screening. We propose an Attention-Guided Deep Multi-Instance Learning method (Gait-MIL) to effectively capture discriminative features from gait patterns, which is inspired by ScoNet-MT's pioneering use of gait patterns for scoliosis detection. We evaluate our method on the first large-scale dataset based on gait patterns for scoliosis classification. The results demonstrate that our study improves the performance of using gait as a biomarker for scoliosis detection, significantly enhances detection accuracy for the particularly challenging Neutral cases, where subtle indicators are often overlooked. Our Gait-MIL also performs robustly in imbalanced scenarios, making it a promising tool for large-scale scoliosis screening.
Related papers
- Symmetric Perception and Ordinal Regression for Detecting Scoliosis Natural Image [7.2344401655166015]
We propose to use natural images of the human back for wide-range scoliosis screening.
Taking inspiration from this, we propose a dual-path scoliosis detection network with two main modules.
Our method achieves accuracies of 95.11% and 81.46% in estimation of general severity level and fine-grained severity level of the scoliosis, respectively.
arXiv Detail & Related papers (2024-11-24T11:58:07Z) - Gait Patterns as Biomarkers: A Video-Based Approach for Classifying Scoliosis [10.335383345968966]
Scoliosis presents significant diagnostic challenges, particularly in adolescents.
Traditional diagnostic and follow-up methods face limitations due to the need for clinical expertise and the risk of radiation exposure.
We introduce a novel video-based, non-invasive method for scoliosis classification using gait analysis.
arXiv Detail & Related papers (2024-07-08T08:29:02Z) - Shape Matters: Detecting Vertebral Fractures Using Differentiable
Point-Based Shape Decoding [51.38395069380457]
Degenerative spinal pathologies are highly prevalent among the elderly population.
Timely diagnosis of osteoporotic fractures and other degenerative deformities facilitates proactive measures to mitigate the risk of severe back pain and disability.
In this study, we specifically explore the use of shape auto-encoders for vertebrae.
arXiv Detail & Related papers (2023-12-08T18:11:22Z) - Automatic diagnosis of knee osteoarthritis severity using Swin
transformer [55.01037422579516]
Knee osteoarthritis (KOA) is a widespread condition that can cause chronic pain and stiffness in the knee joint.
We propose an automated approach that employs the Swin Transformer to predict the severity of KOA.
arXiv Detail & Related papers (2023-07-10T09:49:30Z) - Scoliosis Detection using Deep Neural Network [0.0]
Scoliosis is a sideways curvature of the spine that most often is diagnosed among young teenagers.
Current gold standard to detect and estimate scoliosis is to manually examine the spinal anterior-posterior X-ray images.
Deep learning has shown amazing achievements in automatic spinal curvature estimation.
arXiv Detail & Related papers (2022-10-31T12:52:04Z) - Faint Features Tell: Automatic Vertebrae Fracture Screening Assisted by
Contrastive Learning [11.944282446506396]
Long-term vertebral fractures severely affect the life quality of patients, causing kyphotic, lumbar deformity and even paralysis.
In particular, the mild fractures and normal controls are quite difficult to distinguish for deep learning models and inexperienced doctors.
Motivated by this, we propose a supervised contrastive learning based model to estimate Genent's Grade of vertebral fracture with CT scans.
Our method has a specificity of 99% and a sensitivity of 85% in binary classification, and a macio-F1 of 77% in multi-classification, indicating that contrastive learning significantly improves the accuracy of vertebrae fracture screening.
arXiv Detail & Related papers (2022-08-23T02:39:08Z) - A Convolutional Approach to Vertebrae Detection and Labelling in Whole
Spine MRI [70.04389979779195]
We propose a novel convolutional method for the detection and identification of vertebrae in whole spine MRIs.
This involves using a learnt vector field to group detected vertebrae corners together into individual vertebral bodies.
We demonstrate the clinical applicability of this method, using it for automated scoliosis detection in both lumbar and whole spine MR scans.
arXiv Detail & Related papers (2020-07-06T09:37:12Z) - Spatio-spectral deep learning methods for in-vivo hyperspectral
laryngeal cancer detection [49.32653090178743]
Early detection of head and neck tumors is crucial for patient survival.
Hyperspectral imaging (HSI) can be used for non-invasive detection of head and neck tumors.
We present multiple deep learning techniques for in-vivo laryngeal cancer detection based on HSI.
arXiv Detail & Related papers (2020-04-21T17:07:18Z) - Vertebra-Focused Landmark Detection for Scoliosis Assessment [54.24477530836629]
We propose a novel vertebra-focused landmark detection method.
Our model first localizes the vertebra centers, based on which it then traces the four corner landmarks of the vertebra through the learned corner offset.
Results demonstrate the merits of our method in both Cobb angle measurement and landmark detection on low-contrast and ambiguous X-ray images.
arXiv Detail & Related papers (2020-01-09T19:17:41Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.