TransMA: an explainable multi-modal deep learning model for predicting properties of ionizable lipid nanoparticles in mRNA delivery
- URL: http://arxiv.org/abs/2407.05736v1
- Date: Mon, 8 Jul 2024 08:43:32 GMT
- Title: TransMA: an explainable multi-modal deep learning model for predicting properties of ionizable lipid nanoparticles in mRNA delivery
- Authors: Kun Wu, Zixu Wang, Xiulong Yang, Yangyang Chen, Zhenqi Han, Jialu Zhang, Lizhuang Liu,
- Abstract summary: We propose an explainable LNPs transfection efficiency prediction model, called TransMA.
TransMA employs a multi-modal molecular structure fusion architecture.
It achieves state-of-the-art performance in predicting transfection efficiency.
- Score: 10.7522257668405
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: As the primary mRNA delivery vehicles, ionizable lipid nanoparticles (LNPs) exhibit excellent safety, high transfection efficiency, and strong immune response induction. However, the screening process for LNPs is time-consuming and costly. To expedite the identification of high-transfection-efficiency mRNA drug delivery systems, we propose an explainable LNPs transfection efficiency prediction model, called TransMA. TransMA employs a multi-modal molecular structure fusion architecture, wherein the fine-grained atomic spatial relationship extractor named molecule 3D Transformer captures three-dimensional spatial features of the molecule, and the coarse-grained atomic sequence extractor named molecule Mamba captures one-dimensional molecular features. We design the mol-attention mechanism block, enabling it to align coarse and fine-grained atomic features and captures relationships between atomic spatial and sequential structures. TransMA achieves state-of-the-art performance in predicting transfection efficiency using the scaffold and cliff data splitting methods on the current largest LNPs dataset, including Hela and RAW cell lines. Moreover, we find that TransMA captures the relationship between subtle structural changes and significant transfection efficiency variations, providing valuable insights for LNPs design. Additionally, TransMA's predictions on external transfection efficiency data maintain a consistent order with actual transfection efficiencies, demonstrating its robust generalization capability. The code, model and data are made publicly available at https://github.com/wklix/TransMA/tree/master. We hope that high-accuracy transfection prediction models in the future can aid in LNPs design and initial screening, thereby assisting in accelerating the mRNA design process.
Related papers
- LANTERN: A Machine Learning Framework for Lipid Nanoparticle Transfection Efficiency Prediction [22.613971394957368]
New ionizable lipids for efficient lipid nanoparticles (LNP)-mediated RNA delivery remains a critical bottleneck for RNA-based therapeutics development.<n>Recent advances have highlighted the potential of machine learning (ML) to predict transfection efficiency from molecular structure.<n>Here, we present LANTERN, a robust ML framework for predicting transfection efficiency based on ionizable lipid representation.
arXiv Detail & Related papers (2025-07-03T22:49:49Z) - DiffMS: Diffusion Generation of Molecules Conditioned on Mass Spectra [60.39311767532607]
We present DiffMS, a formula-restricted encoder-decoder generative network that achieves state-of-the-art performance on this task.<n>To develop a robust decoder that bridges latent embeddings and molecular structures, we pretrain the diffusion decoder with fingerprint-structure pairs.<n>Experiments on established benchmarks show that DiffMS outperforms existing models on de novo molecule generation.
arXiv Detail & Related papers (2025-02-13T18:29:48Z) - Electron-Electron Interactions in Device Simulation via Non-equilibrium Green's Functions and the GW Approximation [71.63026504030766]
electron-electron (e-e) interactions must be explicitly incorporated in quantum transport simulation.
This study is the first one reporting large-scale atomistic quantum transport simulations of nano-devices under non-equilibrium conditions.
arXiv Detail & Related papers (2024-12-17T15:05:33Z) - Conditional Synthesis of 3D Molecules with Time Correction Sampler [58.0834973489875]
Time-Aware Conditional Synthesis (TACS) is a novel approach to conditional generation on diffusion models.
It integrates adaptively controlled plug-and-play "online" guidance into a diffusion model, driving samples toward the desired properties.
arXiv Detail & Related papers (2024-11-01T12:59:25Z) - Text-Guided Multi-Property Molecular Optimization with a Diffusion Language Model [77.50732023411811]
We propose a text-guided multi-property molecular optimization method utilizing transformer-based diffusion language model (TransDLM)
TransDLM leverages standardized chemical nomenclature as semantic representations of molecules and implicitly embeds property requirements into textual descriptions.
Our approach surpasses state-of-the-art methods in optimizing molecular structural similarity and enhancing chemical properties on the benchmark dataset.
arXiv Detail & Related papers (2024-10-17T14:30:27Z) - Dumpling GNN: Hybrid GNN Enables Better ADC Payload Activity Prediction Based on Chemical Structure [53.76752789814785]
DumplingGNN is a hybrid Graph Neural Network architecture specifically designed for predicting ADC payload activity based on chemical structure.
We evaluate it on a comprehensive ADC payload dataset focusing on DNA Topoisomerase I inhibitors.
It demonstrates exceptional accuracy (91.48%), sensitivity (95.08%), and specificity (97.54%) on our specialized ADC payload dataset.
arXiv Detail & Related papers (2024-09-23T17:11:04Z) - Molecule Design by Latent Prompt Transformer [76.2112075557233]
This work explores the challenging problem of molecule design by framing it as a conditional generative modeling task.
We propose a novel generative model comprising three components: (1) a latent vector with a learnable prior distribution; (2) a molecule generation model based on a causal Transformer, which uses the latent vector as a prompt; and (3) a property prediction model that predicts a molecule's target properties and/or constraint values using the latent prompt.
arXiv Detail & Related papers (2024-02-27T03:33:23Z) - PTransIPs: Identification of phosphorylation sites enhanced by protein
PLM embeddings [2.971764950146918]
We develop PTransIPs, a new deep learning framework for the identification of phosphorylation sites.
PTransIPs outperforms existing state-of-the-art (SOTA) methods, achieving AUCs of 0.9232 and 0.9660.
arXiv Detail & Related papers (2023-08-08T07:50:38Z) - PhagoStat a scalable and interpretable end to end framework for
efficient quantification of cell phagocytosis in neurodegenerative disease
studies [0.0]
We introduce an end-to-end, scalable, and versatile real-time framework for quantifying and analyzing phagocytic activity.
Our proposed pipeline is able to process large data-sets and includes a data quality verification module.
We apply our pipeline to analyze microglial cell phagocytosis in FTD and obtain statistically reliable results.
arXiv Detail & Related papers (2023-04-26T18:10:35Z) - Learning the Physics of Particle Transport via Transformers [0.0]
We present a data-driven dose calculation algorithm predicting the dose deposited by mono-energetic proton beams.
Our proposed model is 33 times faster than current clinical analytic pencil beam algorithms.
Our model could overcome a major obstacle that has so far prohibited real-time adaptive proton treatments.
arXiv Detail & Related papers (2021-09-08T22:26:03Z) - Data-Driven Discovery of Molecular Photoswitches with Multioutput
Gaussian Processes [51.17758371472664]
Photoswitchable molecules display two or more isomeric forms that may be accessed using light.
We present a data-driven discovery pipeline for molecular photoswitches underpinned by dataset curation and multitask learning.
We validate our proposed approach experimentally by screening a library of commercially available photoswitchable molecules.
arXiv Detail & Related papers (2020-06-28T20:59:03Z) - MolTrans: Molecular Interaction Transformer for Drug Target Interaction
Prediction [68.5766865583049]
Drug target interaction (DTI) prediction is a foundational task for in silico drug discovery.
Recent years have witnessed promising progress for deep learning in DTI predictions.
We propose a Molecular Interaction Transformer (TransMol) to address these limitations.
arXiv Detail & Related papers (2020-04-23T18:56:04Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.