LANTERN: A Machine Learning Framework for Lipid Nanoparticle Transfection Efficiency Prediction
- URL: http://arxiv.org/abs/2507.03209v1
- Date: Thu, 03 Jul 2025 22:49:49 GMT
- Title: LANTERN: A Machine Learning Framework for Lipid Nanoparticle Transfection Efficiency Prediction
- Authors: Asal Mehradfar, Mohammad Shahab Sepehri, Jose Miguel Hernandez-Lobato, Glen S. Kwon, Mahdi Soltanolkotabi, Salman Avestimehr, Morteza Rasoulianboroujeni,
- Abstract summary: New ionizable lipids for efficient lipid nanoparticles (LNP)-mediated RNA delivery remains a critical bottleneck for RNA-based therapeutics development.<n>Recent advances have highlighted the potential of machine learning (ML) to predict transfection efficiency from molecular structure.<n>Here, we present LANTERN, a robust ML framework for predicting transfection efficiency based on ionizable lipid representation.
- Score: 22.613971394957368
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The discovery of new ionizable lipids for efficient lipid nanoparticle (LNP)-mediated RNA delivery remains a critical bottleneck for RNA-based therapeutics development. Recent advances have highlighted the potential of machine learning (ML) to predict transfection efficiency from molecular structure, enabling high-throughput virtual screening and accelerating lead identification. However, existing approaches are hindered by inadequate data quality, ineffective feature representations, low predictive accuracy, and poor generalizability. Here, we present LANTERN (Lipid nANoparticle Transfection Efficiency pRedictioN), a robust ML framework for predicting transfection efficiency based on ionizable lipid representation. We benchmarked a diverse set of ML models against AGILE, a previously published model developed for transfection prediction. Our results show that combining simpler models with chemically informative features, particularly count-based Morgan fingerprints, outperforms more complex models that rely on internally learned embeddings, such as AGILE. We also show that a multi-layer perceptron trained on a combination of Morgan fingerprints and Expert descriptors achieved the highest performance ($\text{R}^2$ = 0.8161, r = 0.9053), significantly exceeding AGILE ($\text{R}^2$ = 0.2655, r = 0.5488). We show that the models in LANTERN consistently have strong performance across multiple evaluation metrics. Thus, LANTERN offers a robust benchmarking framework for LNP transfection prediction and serves as a valuable tool for accelerating lipid-based RNA delivery systems design.
Related papers
- Reparameterized LLM Training via Orthogonal Equivalence Transformation [54.80172809738605]
We present POET, a novel training algorithm that uses Orthogonal Equivalence Transformation to optimize neurons.<n>POET can stably optimize the objective function with improved generalization.<n>We develop efficient approximations that make POET flexible and scalable for training large-scale neural networks.
arXiv Detail & Related papers (2025-06-09T17:59:34Z) - Understanding Reinforcement Learning-Based Fine-Tuning of Diffusion Models: A Tutorial and Review [63.31328039424469]
This tutorial provides a comprehensive survey of methods for fine-tuning diffusion models to optimize downstream reward functions.
We explain the application of various RL algorithms, including PPO, differentiable optimization, reward-weighted MLE, value-weighted sampling, and path consistency learning.
arXiv Detail & Related papers (2024-07-18T17:35:32Z) - Machine Learning for ALSFRS-R Score Prediction: Making Sense of the Sensor Data [44.99833362998488]
Amyotrophic Lateral Sclerosis (ALS) is a rapidly progressive neurodegenerative disease that presents individuals with limited treatment options.
The present investigation, spearheaded by the iDPP@CLEF 2024 challenge, focuses on utilizing sensor-derived data obtained through an app.
arXiv Detail & Related papers (2024-07-10T19:17:23Z) - Accelerating Drug Safety Assessment using Bidirectional-LSTM for SMILES Data [0.0]
Bi-Directional Long Short Term Memory (BiLSTM) is a variant of Recurrent Neural Network (RNN) that processes input molecular sequences.
The proposed work aims to understand the sequential patterns encoded in the SMILES strings, which are then utilised for predicting the toxicity of the molecules.
arXiv Detail & Related papers (2024-07-08T18:12:11Z) - TransMA: an explainable multi-modal deep learning model for predicting properties of ionizable lipid nanoparticles in mRNA delivery [10.7522257668405]
We propose an explainable LNPs transfection efficiency prediction model, called TransMA.
TransMA employs a multi-modal molecular structure fusion architecture.
It achieves state-of-the-art performance in predicting transfection efficiency.
arXiv Detail & Related papers (2024-07-08T08:43:32Z) - YZS-model: A Predictive Model for Organic Drug Solubility Based on Graph Convolutional Networks and Transformer-Attention [9.018408514318631]
Traditional methods often miss complex molecular structures, leading to inaccuracies.
We introduce the YZS-Model, a deep learning framework integrating Graph Convolutional Networks (GCN), Transformer architectures, and Long Short-Term Memory (LSTM) networks.
YZS-Model achieved an $R2$ of 0.59 and an RMSE of 0.57, outperforming benchmark models.
arXiv Detail & Related papers (2024-06-27T12:40:29Z) - Machine Learning Small Molecule Properties in Drug Discovery [44.62264781248437]
We review a wide range of properties, including binding affinities, solubility, and ADMET (Absorption, Distribution, Metabolism, Excretion, and Toxicity)
We discuss existing popular descriptors and embeddings, such as chemical fingerprints and graph-based neural networks.
Finally, techniques to provide an understanding of model predictions, especially for critical decision-making in drug discovery are assessed.
arXiv Detail & Related papers (2023-08-02T22:18:41Z) - Parameter estimation for WMTI-Watson model of white matter using
encoder-decoder recurrent neural network [0.0]
In this study, we evaluate the performance of NLLS, the RNN-based method and a multilayer perceptron (MLP) on datasets rat and human brain.
We showed that the proposed RNN-based fitting approach had the advantage of highly reduced computation time over NLLS.
arXiv Detail & Related papers (2022-03-01T16:33:15Z) - Deep Learning for Virtual Screening: Five Reasons to Use ROC Cost
Functions [80.12620331438052]
deep learning has become an important tool for rapid screening of billions of molecules in silico for potential hits containing desired chemical features.
Despite its importance, substantial challenges persist in training these models, such as severe class imbalance, high decision thresholds, and lack of ground truth labels in some datasets.
We argue in favor of directly optimizing the receiver operating characteristic (ROC) in such cases, due to its robustness to class imbalance.
arXiv Detail & Related papers (2020-06-25T08:46:37Z) - A Systematic Approach to Featurization for Cancer Drug Sensitivity
Predictions with Deep Learning [49.86828302591469]
We train >35,000 neural network models, sweeping over common featurization techniques.
We found the RNA-seq to be highly redundant and informative even with subsets larger than 128 features.
arXiv Detail & Related papers (2020-04-30T20:42:17Z) - Neural Generators of Sparse Local Linear Models for Achieving both
Accuracy and Interpretability [28.90948136731314]
We propose neural generators of sparse local linear models (NGSLLs)
NGSLLs generate sparse linear weights for each sample using deep neural networks (DNNs)
We demonstrate the effectiveness of the NGSLL quantitatively and qualitatively by evaluating prediction performance and visualizing generated weights on image and text classification tasks.
arXiv Detail & Related papers (2020-03-13T18:49:36Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.