Preparation of Schrödinger cat quantum state using parametric down-conversion interaction
- URL: http://arxiv.org/abs/2407.05759v2
- Date: Mon, 30 Sep 2024 14:12:01 GMT
- Title: Preparation of Schrödinger cat quantum state using parametric down-conversion interaction
- Authors: V. L. Gorshenin,
- Abstract summary: The Schr"odinger cat (SC) states are important in quantum optics because of their non-Gaussian properties.
We propose a novel method of conditional generation of bright (multi-photon) SC states that uses degenerate parametric down-conversion and heralding measurement of the photon number in the pump mode.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The Schr\"odinger cat (SC) states are important in quantum optics because of their non-Gaussian properties. We propose a novel method of conditional generation of bright (multi-photon) SC states that uses degenerate parametric down-conversion and heralding measurement of the photon number in the pump mode. We show that this method, in principle, could be implemented using the modern high-\(Q\) optical microresonators.
Related papers
- Entanglement of photonic modes from a continuously driven two-level system [34.50067763557076]
We experimentally generate entangled photonic modes by continuously exciting a quantum emitter, a superconducting qubit, with a coherent drive.
We show that entanglement is generated between modes extracted from the two sidebands of the resonance fluorescence spectrum.
Our approach can be utilized to distribute entanglement at a high rate in various physical platforms.
arXiv Detail & Related papers (2024-07-10T18:48:41Z) - On-chip quantum interference between independent lithium niobate-on-insulator photon-pair sources [35.310629519009204]
A lithium niobate-on-insulator (LNOI) integrated photonic circuit generates a two-photon path-entangled state, and a programmable interferometer for quantum interference.
We generate entangled photons with $sim2.3times108$ pairs/s/mW brightness and perform quantum interference experiments on the chip with $96.8pm3.6%$ visibility.
Our results provide a path towards large-scale integrated quantum photonics including efficient photon-pair generation and programmable circuits for applications such as boson sampling and quantum communications.
arXiv Detail & Related papers (2024-04-12T10:24:43Z) - Integrated Quantum Optical Phase Sensor [48.7576911714538]
We present a photonic integrated circuit fabricated in thin-film lithium niobate.
We use the second-order nonlinearity to produce a squeezed state at the same frequency as the pump light and realize circuit control and sensing with electro-optics.
We anticipate that on-chip photonic systems like this, which operate with low power and integrate all of the needed functionality on a single die, will open new opportunities for quantum optical sensing.
arXiv Detail & Related papers (2022-12-19T18:46:33Z) - Protecting the quantum interference of cat states by phase-space
compression [45.82374977939355]
Cat states with their unique phase-space interference properties are ideal candidates for understanding quantum mechanics.
They are highly susceptible to photon loss, which inevitably diminishes their quantum non-Gaussian features.
Here, we protect these non-Gaussian features by compressing the phase-space distribution of a cat state.
arXiv Detail & Related papers (2022-12-02T16:06:40Z) - Quantum optical analysis of high-harmonic generation in solids within a
Wannier-Bloch picture [0.0]
We study high-harmonic generation processes in solid-state systems under a quantum optical framework.
We find an entangled state between the field modes and the different Wannier states where the electron can be found after recombination.
arXiv Detail & Related papers (2022-10-31T18:00:04Z) - Deterministic Free-Propagating Photonic Qubits with Negative Wigner
Functions [0.0]
Coherent states ubiquitous in classical and quantum communications, squeezed states used in quantum sensing, and even highly-entangled states studied in the context of quantum computing can be produced deterministically.
We describe the first fully deterministic preparation of non-Gaussian Wigner-negative states of light, obtained by mapping the internal state of an intracavdberg superatom onto an optical qubit.
arXiv Detail & Related papers (2022-09-05T16:37:42Z) - Robust preparation of Wigner-negative states with optimized
SNAP-displacement sequences [41.42601188771239]
We create non-classical states of light in three-dimensional microwave cavities.
These states are useful for quantum computation.
We show that this way of creating non-classical states is robust to fluctuations of the system parameters.
arXiv Detail & Related papers (2021-11-15T18:20:38Z) - All-optical Quantum State Engineering for Rotation-symmetric Bosonic
States [0.0]
We propose and analyze a method to generate a variety of non-Gaussian states using coherent photon subtraction.
Our method can be readily implemented with current quantum photonic technologies.
arXiv Detail & Related papers (2021-05-23T22:43:23Z) - Generating and detecting entangled cat states in dissipatively coupled
degenerate optical parametric oscillators [1.238954119278917]
"Cat states" embody quantum coherence in an accessible way and can be harnessed for fundamental tests and quantum information tasks alike.
We show that a dissipative coupling between degenerate optical parametric oscillators extends this to two-mode entangled cat states.
We numerically explore the parameter regime for the successful generation of transient two-mode entangled cat states.
arXiv Detail & Related papers (2021-03-30T05:46:44Z) - Bose-Einstein condensate soliton qubit states for metrological
applications [58.720142291102135]
We propose novel quantum metrology applications with two soliton qubit states.
Phase space analysis, in terms of population imbalance - phase difference variables, is also performed to demonstrate macroscopic quantum self-trapping regimes.
arXiv Detail & Related papers (2020-11-26T09:05:06Z) - Engineering continuous and discrete variable quantum vortex states by
nonlocal photon subtraction in a reconfigurable photonic chip [0.0]
We study the production of entangled two- and N-mode quantum states of light in optical waveguides.
We propose a quantum photonic circuit that produces a reconfigurable superposition of photon subtraction on two single-mode squeezed states.
arXiv Detail & Related papers (2020-04-11T11:11:16Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.