Quantum optical analysis of high-harmonic generation in solids within a
Wannier-Bloch picture
- URL: http://arxiv.org/abs/2211.00033v1
- Date: Mon, 31 Oct 2022 18:00:04 GMT
- Title: Quantum optical analysis of high-harmonic generation in solids within a
Wannier-Bloch picture
- Authors: Javier Rivera-Dean, Philipp Stammer, Andrew S. Maxwell, Theocharis
Lamprou, Andr\'es F. Ord\'o\~nez, Emilio Pisanty, Paraskevas Tzallas, Maciej
Lewenstein and Marcelo F. Ciappina
- Abstract summary: We study high-harmonic generation processes in solid-state systems under a quantum optical framework.
We find an entangled state between the field modes and the different Wannier states where the electron can be found after recombination.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The quantum optical characterization of strongly laser-driven matter
interactions may allow to extend current quantum technology platforms to
unprecedented time and energy scales. In this work, we make a step forward in
this direction by studying high-harmonic generation processes in solid-state
systems under a quantum optical framework. We do this under a Wannier-Bloch
approach, which allows us to perform a direct comparison with the analysis that
has been already done for gaseous systems. This allows us to study the photon
number probability distribution of the light obtained after emission, and
relate its features with those found in usual HHG spectra. Furthermore, after
performing the corresponding quantum operations that allow us to restrict
ourselves to HHG processes, we find an entangled state between the field modes
and the different Wannier states where the electron can be found after
recombination, but also between the field modes themselves. We study the
non-classical features of this state, and quantify the light-matter
entanglement and the entanglement between the field modes.
Related papers
- Coherent spectroscopy of a single Mn-doped InGaAs quantum dot [0.0]
Doping a self-assembled InGaAs/GaAs quantum dot with a single Mn atom provides a quantum system with discrete energy levels and original spin-dependent optical selection rules.
We show evidence for quantum interference within the V-like system and assess the pure dephasing rate between the corresponding spin states.
arXiv Detail & Related papers (2024-10-25T13:03:40Z) - Multi-phonon Fock state heralding with single-photon detection [0.0]
We show how single-photon detection can herald selected multi-phonon Fock states, even in the presence of optical losses.
We also present an approach for quantum tomography of the heralded phonon states.
arXiv Detail & Related papers (2024-07-26T22:51:53Z) - Non-classical states of light after high-harmonic generation in
semiconductors: a Bloch-based perspective [0.0]
We investigate the process of high-harmonic generation in semiconductors under a quantum optical perspective.
We demonstrate the generation of non-classical light states similar to those found when driving atomic systems.
This study provides insights into HHG in semiconductors and its potential for generating non-classical light sources.
arXiv Detail & Related papers (2023-09-25T18:00:22Z) - Non-Markovian Dynamics of Open Quantum Systems via Auxiliary Particles
with Exact Operator Constraint [0.0]
We introduce an auxiliary-particle field theory to treat the non-Markovian dynamics of driven-dissipative quantum systems.
We apply the method to a driven-dissipative photon Bose-Einstein condensate (BEC) coupled to a reservoir of dye molecules with electronic and vibronic excitations.
arXiv Detail & Related papers (2023-08-02T06:56:38Z) - Tunable photon-mediated interactions between spin-1 systems [68.8204255655161]
We show how to harness multi-level emitters with several optical transitions to engineer photon-mediated interactions between effective spin-1 systems.
Our results expand the quantum simulation toolbox available in cavity QED and quantum nanophotonic setups.
arXiv Detail & Related papers (2022-06-03T14:52:34Z) - Ultra-long photonic quantum walks via spin-orbit metasurfaces [52.77024349608834]
We report ultra-long photonic quantum walks across several hundred optical modes, obtained by propagating a light beam through very few closely-stacked liquid-crystal metasurfaces.
With this setup we engineer quantum walks up to 320 discrete steps, far beyond state-of-the-art experiments.
arXiv Detail & Related papers (2022-03-28T19:37:08Z) - Visualizing spinon Fermi surfaces with time-dependent spectroscopy [62.997667081978825]
We propose applying time-dependent photo-emission spectroscopy, an established tool in solid state systems, in cold atom quantum simulators.
We show in exact diagonalization simulations of the one-dimensional $t-J$ model that the spinons start to populate previously unoccupied states in an effective band structure.
The dependence of the spectral function on the time after the pump pulse reveals collective interactions among spinons.
arXiv Detail & Related papers (2021-05-27T18:00:02Z) - Qubit-photon bound states in topological waveguides with long-range
hoppings [62.997667081978825]
Quantum emitters interacting with photonic band-gap materials lead to the appearance of qubit-photon bound states.
We study the features of the qubit-photon bound states when the emitters couple to the bulk modes in the different phases.
We consider the coupling of emitters to the edge modes appearing in the different topological phases.
arXiv Detail & Related papers (2021-05-26T10:57:21Z) - Probing excited-state dynamics with quantum entangled photons:
Correspondence to coherent multidimensional spectroscopy [0.0]
Quantum light is a key resource for promoting quantum technology.
One such class of technology aims to improve the precision of optical measurements using engineered quantum states of light.
arXiv Detail & Related papers (2020-05-22T03:22:44Z) - Quantum electrodynamics in a topological waveguide [47.187609203210705]
In this work we investigate the properties of superconducting qubits coupled to a metamaterial waveguide based on a photonic analog of the Su-Schrieffer-Heeger model.
We explore topologically-induced properties of qubits coupled to such a waveguide, ranging from the formation of directional qubit-photon bound states to topology-dependent cooperative radiation effects.
arXiv Detail & Related papers (2020-05-08T00:22:17Z) - Spectrally reconfigurable quantum emitters enabled by optimized fast
modulation [42.39394379814941]
Spectral control in solid state platforms such as color centers, rare earth ions, and quantum dots is attractive for realizing such applications on-chip.
We propose the use of frequency-modulated optical transitions for spectral engineering of single photon emission.
Our results suggest that frequency modulation is a powerful technique for the generation of new light states with unprecedented control over the spectral and temporal properties of single photons.
arXiv Detail & Related papers (2020-03-27T18:24:35Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.