論文の概要: Interpretability of Uncertainty: Exploring Cortical Lesion Segmentation in Multiple Sclerosis
- arxiv url: http://arxiv.org/abs/2407.05761v1
- Date: Mon, 8 Jul 2024 09:13:30 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-09 16:20:46.815489
- Title: Interpretability of Uncertainty: Exploring Cortical Lesion Segmentation in Multiple Sclerosis
- Title(参考訳): 不確かさの解釈可能性:多発性硬化症における皮質病変分節の探索
- Authors: Nataliia Molchanova, Alessandro Cagol, Pedro M. Gordaliza, Mario Ocampo-Pineda, Po-Jui Lu, Matthias Weigel, Xinjie Chen, Adrien Depeursinge, Cristina Granziera, Henning Müller, Meritxell Bach Cuadra,
- Abstract要約: 不確実性定量化(UQ)は人工知能システムの信頼性を評価する上で重要である。
本研究では,磁気共鳴画像における焦点病変分割のための深層学習モデルにおけるインスタンス単位の不確実性値の解釈可能性について検討する。
- 参考スコア(独自算出の注目度): 33.91263917157504
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: Uncertainty quantification (UQ) has become critical for evaluating the reliability of artificial intelligence systems, especially in medical image segmentation. This study addresses the interpretability of instance-wise uncertainty values in deep learning models for focal lesion segmentation in magnetic resonance imaging, specifically cortical lesion (CL) segmentation in multiple sclerosis. CL segmentation presents several challenges, including the complexity of manual segmentation, high variability in annotation, data scarcity, and class imbalance, all of which contribute to aleatoric and epistemic uncertainty. We explore how UQ can be used not only to assess prediction reliability but also to provide insights into model behavior, detect biases, and verify the accuracy of UQ methods. Our research demonstrates the potential of instance-wise uncertainty values to offer post hoc global model explanations, serving as a sanity check for the model. The implementation is available at https://github.com/NataliiaMolch/interpret-lesion-unc.
- Abstract(参考訳): 不確実性定量化(UQ)は、特に医用画像のセグメンテーションにおいて、人工知能システムの信頼性を評価するために重要になっている。
本研究は,脳磁図における焦点病変のセグメンテーション,特に多発性硬化症における大脳皮質病変(CL)セグメンテーションの深層学習モデルにおけるインスタンスワイド不確実性の解釈可能性について考察する。
CLセグメンテーションは、手動セグメンテーションの複雑さ、アノテーションの高可変性、データの不足、クラス不均衡などいくつかの課題を呈し、これらすべてがアレタリックおよびてんかんの不確実性に寄与している。
予測信頼性を評価するだけでなく、モデル行動の洞察を提供し、バイアスを検出し、UQ手法の精度を検証するためにUQをどのように利用できるかを検討する。
本研究は, ケースワイド不確実性値がポストホックなグローバルモデル説明を提供する可能性を示し, モデルに対する健全性チェックとして機能する。
実装はhttps://github.com/NataliiaMolch/interpret-lesion-uncで公開されている。
関連論文リスト
- To Believe or Not to Believe Your LLM [51.2579827761899]
大規模言語モデル(LLM)における不確実性定量化について検討する。
疫学的な不確実性が大きい場合にのみ確実に検出できる情報理論の指標を導出する。
定式化の利点を実証する一連の実験を行う。
論文 参考訳(メタデータ) (2024-06-04T17:58:18Z) - Structural-Based Uncertainty in Deep Learning Across Anatomical Scales: Analysis in White Matter Lesion Segmentation [8.64414399041931]
不確実性定量化(英: Uncertainty Quantification、UQ)は、ホワイトマター病変(WML)セグメンテーションの文脈における、自動ディープラーニング(DL)ツールの信頼性の指標である。
我々は, 構造的予測の相違から, 病変や患者スケールの不確かさを定量化する尺度を開発した。
334人の患者を対象にした多心MRIデータセットの結果, 病変のモデル誤差や患者スケールをより効果的に把握できることが示唆された。
論文 参考訳(メタデータ) (2023-11-15T13:04:57Z) - Decomposing Uncertainty for Large Language Models through Input Clarification Ensembling [69.83976050879318]
大規模言語モデル(LLM)では、不確実性の原因を特定することが、信頼性、信頼性、解釈可能性を改善するための重要なステップである。
本稿では,LLMのための不確実性分解フレームワークについて述べる。
提案手法は,入力に対する一連の明確化を生成し,それらをLLMに入力し,対応する予測をアンサンブルする。
論文 参考訳(メタデータ) (2023-11-15T05:58:35Z) - Uncertainty Quantification in Machine Learning Based Segmentation: A
Post-Hoc Approach for Left Ventricle Volume Estimation in MRI [0.0]
左室容積推定は各種心血管疾患の診断・管理に重要である。
近年の機械学習、特にU-Netのような畳み込みネットワークは、医療画像の自動セグメンテーションを促進している。
本研究では,LV容積予測におけるポストホック不確実性推定のための新しい手法を提案する。
論文 参考訳(メタデータ) (2023-10-30T13:44:55Z) - Improving Multiple Sclerosis Lesion Segmentation Across Clinical Sites:
A Federated Learning Approach with Noise-Resilient Training [75.40980802817349]
深層学習モデルは、自動的にMS病変を分節する約束を示しているが、正確な注釈付きデータの不足は、この分野の進歩を妨げている。
我々は,MS病変の不均衡分布とファジィ境界を考慮したDecoupled Hard Label Correction(DHLC)戦略を導入する。
また,集約型中央モデルを利用したCELC(Centrally Enhanced Label Correction)戦略も導入した。
論文 参考訳(メタデータ) (2023-08-31T00:36:10Z) - Towards Reliable Medical Image Segmentation by utilizing Evidential Calibrated Uncertainty [52.03490691733464]
本稿では,医療画像セグメンテーションネットワークにシームレスに統合可能な,実装が容易な基礎モデルであるDEviSを紹介する。
主観的論理理論を利用して、医用画像分割の問題に対する確率と不確実性を明示的にモデル化する。
DeviSには不確実性を考慮したフィルタリングモジュールが組み込まれている。
論文 参考訳(メタデータ) (2023-01-01T05:02:46Z) - Improving Trustworthiness of AI Disease Severity Rating in Medical
Imaging with Ordinal Conformal Prediction Sets [0.7734726150561088]
統計的に厳密な不確実性定量化の欠如は、AI結果の信頼を損なう重要な要因である。
分布自由不確実性定量化の最近の進歩は、これらの問題に対する実用的な解決策である。
本稿では, 正しい狭窄の重症度を含むことが保証される順序予測セットを形成する手法を実証する。
論文 参考訳(メタデータ) (2022-07-05T18:01:20Z) - Equivariance Allows Handling Multiple Nuisance Variables When Analyzing
Pooled Neuroimaging Datasets [53.34152466646884]
本稿では,構造空間上でインスタンス化された同変表現学習における最近の結果と,因果推論における古典的結果の簡易な利用が,いかに効果的に実現されたかを示す。
いくつかの仮定の下で、我々のモデルが複数のニュアンス変数を扱えることを実証し、そうでなければサンプルの大部分を取り除く必要のあるシナリオにおいて、プールされた科学データセットの分析を可能にする。
論文 参考訳(メタデータ) (2022-03-29T04:54:06Z) - Deep Quantile Regression for Uncertainty Estimation in Unsupervised and
Supervised Lesion Detection [0.0]
不確かさは、異常や病変の検出、臨床診断などの重要な応用において重要である。
そこで本研究では,量子レグレッション(quantile regression)を用いてアレータ性不確かさを推定し,教師付き病変検出と教師なし病変検出の両問題における不確かさを推定する。
本研究では, 病変境界位置における専門家の不一致を特徴付けるために, 量子レグレッションがいかに有効かを示す。
論文 参考訳(メタデータ) (2021-09-20T08:50:21Z) - Joint Dermatological Lesion Classification and Confidence Modeling with
Uncertainty Estimation [23.817227116949958]
本稿では,皮膚学的な分類と不確実性評価を共同で検討する枠組みを提案する。
信頼ネットワークから不確実な特徴や望ましくない変化を避けるために,各特徴の信頼度を推定する。
提案手法の可能性を2つの最先端の皮膚内視鏡的データセットに示す。
論文 参考訳(メタデータ) (2021-07-19T11:54:37Z) - Bayesian Uncertainty Estimation of Learned Variational MRI
Reconstruction [63.202627467245584]
我々は,モデル不連続な不確かさを定量化するベイズ変分フレームワークを提案する。
提案手法はMRIのアンダーサンプを用いた再建術の術後成績を示す。
論文 参考訳(メタデータ) (2021-02-12T18:08:14Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。