論文の概要: Structural Generalization in Autonomous Cyber Incident Response with Message-Passing Neural Networks and Reinforcement Learning
- arxiv url: http://arxiv.org/abs/2407.05775v1
- Date: Mon, 8 Jul 2024 09:34:22 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-09 16:10:47.273718
- Title: Structural Generalization in Autonomous Cyber Incident Response with Message-Passing Neural Networks and Reinforcement Learning
- Title(参考訳): メッセージパッシングニューラルネットワークによる自律型サイバーインシデント応答の構造一般化と強化学習
- Authors: Jakob Nyberg, Pontus Johnson,
- Abstract要約: 小さなネットワーク変更のためのリトレーニングエージェントは、時間とエネルギーを消費する。
ホストの数が異なる元のネットワークの変種を作成し、エージェントを追加のトレーニングなしでテストします。
デフォルトのベクトル状態表現を使用するエージェントのパフォーマンスは向上するが、各ネットワークで特別にトレーニングする必要がある。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We believe that agents for automated incident response based on machine learning need to handle changes in network structure. Computer networks are dynamic, and can naturally change in structure over time. Retraining agents for small network changes costs time and energy. We attempt to address this issue with an existing method of relational agent learning, where the relations between objects are assumed to remain consistent across problem instances. The state of the computer network is represented as a relational graph and encoded through a message passing neural network. The message passing neural network and an agent policy using the encoding are optimized end-to-end using reinforcement learning. We evaluate the approach on the second instance of the Cyber Autonomy Gym for Experimentation (CAGE~2), a cyber incident simulator that simulates attacks on an enterprise network. We create variants of the original network with different numbers of hosts and agents are tested without additional training on them. Our results show that agents using relational information are able to find solutions despite changes to the network, and can perform optimally in some instances. Agents using the default vector state representation perform better, but need to be specially trained on each network variant, demonstrating a trade-off between specialization and generalization.
- Abstract(参考訳): 我々は、機械学習に基づく自動インシデント応答のエージェントは、ネットワーク構造の変化を扱う必要があると考えている。
コンピュータネットワークは動的であり、時間とともに自然に構造を変えることができる。
小さなネットワーク変更のためのリトレーニングエージェントは、時間とエネルギーを消費する。
本稿では,既存の関係エージェント学習手法を用いてこの問題に対処する。
コンピュータネットワークの状態はリレーショナルグラフとして表現され、メッセージパッシングニューラルネットワークを介して符号化される。
エンコーディングを用いたメッセージパッシングニューラルネットワークとエージェントポリシーを、強化学習を用いてエンドツーエンドに最適化する。
我々は,企業ネットワークへの攻撃をシミュレートするサイバーインシデントシミュレータCAGE〜2の2番目の事例に対するアプローチを評価する。
ホストの数が異なる元のネットワークの変種を作成し、エージェントを追加のトレーニングなしでテストします。
この結果から,ネットワークの変更にもかかわらず,関係情報を利用したエージェントが解を見つけることができ,場合によっては最適に動作できることが示唆された。
デフォルトのベクトル状態表現を使用するエージェントは、パフォーマンスが向上するが、各ネットワークバリアントに対して特別にトレーニングする必要がある。
関連論文リスト
- Generalization emerges from local optimization in a self-organized learning network [0.0]
我々は,グローバルなエラー関数に頼ることなく,局所最適化ルールのみによって駆動される,教師付き学習ネットワーク構築のための新しいパラダイムを設計・分析する。
我々のネットワークは、ルックアップテーブルの形で、ノードに新しい知識を正確かつ瞬時に保存する。
本稿では,学習例数が十分に大きくなると,アルゴリズムによって生成されたネットワークが完全な一般化状態に体系的に到達する,分類タスクの多くの例を示す。
我々は状態変化のダイナミクスについて報告し、それが突然であり、従来の学習ネットワークですでに観察されている現象である1次相転移の特徴を持つことを示す。
論文 参考訳(メタデータ) (2024-10-03T15:32:08Z) - Centered Self-Attention Layers [89.21791761168032]
変圧器の自己保持機構とグラフニューラルネットワークのメッセージ通過機構を繰り返し適用する。
我々は、このアプリケーションが必然的に、より深い層での同様の表現に過剰なスムーシングをもたらすことを示す。
これらの機構の集約演算子に補正項を提示する。
論文 参考訳(メタデータ) (2023-06-02T15:19:08Z) - Backdoor Attack Detection in Computer Vision by Applying Matrix
Factorization on the Weights of Deep Networks [6.44397009982949]
本稿では,事前訓練したDNNの重みから特徴を抽出するバックドア検出手法を提案する。
他の検出技術と比較して、これはトレーニングデータを必要としないなど、多くのメリットがある。
提案手法は, 競合するアルゴリズムよりも効率性が高く, より正確であり, 深層学習とAIの安全な適用を確実にするのに役立つ。
論文 参考訳(メタデータ) (2022-12-15T20:20:18Z) - Dynamic Network Reconfiguration for Entropy Maximization using Deep
Reinforcement Learning [3.012947865628207]
ネットワーク理論の鍵となる問題は、定量化対象を最適化するためにグラフを再構成する方法である。
本稿では、マルコフ決定過程(MDP)として、指定された構造特性を最適化するネットワークリウィリングの問題を提起する。
次に,Deep Q-Network(DQN)アルゴリズムとグラフニューラルネットワーク(GNN)に基づく一般的な手法を提案する。
論文 参考訳(メタデータ) (2022-05-26T18:44:22Z) - Collaborative adversary nodes learning on the logs of IoT devices in an
IoT network [0.0]
データの観点からIoTセキュリティのための改良されたアプローチを提案する。
Recurrent Neural Network (RNN) を用いたAdLIoTLogモデルの提案
その結果,AdLIoTLogモデルの予測性能は攻撃の有無で3~4%低下した。
論文 参考訳(メタデータ) (2021-12-22T02:56:22Z) - Autonomous Attack Mitigation for Industrial Control Systems [25.894883701063055]
サイバー攻撃からコンピュータネットワークを守るには、警告や脅威情報に対するタイムリーな対応が必要である。
本稿では,大規模産業制御ネットワークにおける自律応答と回復に対する深層強化学習手法を提案する。
論文 参考訳(メタデータ) (2021-11-03T18:08:06Z) - Temporal Graph Network Embedding with Causal Anonymous Walks
Representations [54.05212871508062]
本稿では,時間グラフネットワークに基づく動的ネットワーク表現学習のための新しいアプローチを提案する。
評価のために、時間的ネットワーク埋め込みの評価のためのベンチマークパイプラインを提供する。
欧州の大手銀行が提供した実世界のダウンストリームグラフ機械学習タスクにおいて、我々のモデルの適用性と優れた性能を示す。
論文 参考訳(メタデータ) (2021-08-19T15:39:52Z) - Learning Connectivity for Data Distribution in Robot Teams [96.39864514115136]
グラフニューラルネットワーク(GNN)を用いたアドホックネットワークにおけるデータ分散のためのタスク非依存,分散化,低レイテンシ手法を提案する。
当社のアプローチは、グローバル状態情報に基づいたマルチエージェントアルゴリズムを各ロボットで利用可能にすることで機能させます。
我々は,情報の平均年齢を報酬関数として強化学習を通じて分散gnn通信政策を訓練し,タスク固有の報酬関数と比較してトレーニング安定性が向上することを示す。
論文 参考訳(メタデータ) (2021-03-08T21:48:55Z) - Dynamic Graph: Learning Instance-aware Connectivity for Neural Networks [78.65792427542672]
動的グラフネットワーク(DG-Net)は完全な有向非巡回グラフであり、ノードは畳み込みブロックを表し、エッジは接続経路を表す。
ネットワークの同じパスを使用する代わりに、DG-Netは各ノードの機能を動的に集約する。
論文 参考訳(メタデータ) (2020-10-02T16:50:26Z) - Understanding the Role of Individual Units in a Deep Neural Network [85.23117441162772]
本稿では,画像分類と画像生成ネットワーク内の隠れ単位を系統的に同定する分析フレームワークを提案する。
まず、シーン分類に基づいて訓練された畳み込みニューラルネットワーク(CNN)を分析し、多様なオブジェクト概念にマッチするユニットを発見する。
第2に、シーンを生成するために訓練されたGANモデルについて、同様の分析手法を用いて分析する。
論文 参考訳(メタデータ) (2020-09-10T17:59:10Z) - Side-Tuning: A Baseline for Network Adaptation via Additive Side
Networks [95.51368472949308]
適応は、トレーニングデータが少ない場合や、ネットワークのプリエンプションをエンコードしたい場合などに有効である。
本稿では,サイドチューニングという簡単な方法を提案する。
論文 参考訳(メタデータ) (2019-12-31T18:52:32Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。