論文の概要: Distribution-free Contextual Dynamic Pricing
- arxiv url: http://arxiv.org/abs/2109.07340v1
- Date: Wed, 15 Sep 2021 14:52:44 GMT
- ステータス: 処理完了
- システム内更新日: 2021-09-16 19:05:35.475032
- Title: Distribution-free Contextual Dynamic Pricing
- Title(参考訳): 分散フリーコンテキスト動的価格設定
- Authors: Yiyun Luo and Will Wei Sun and and Yufeng Liu
- Abstract要約: コンテキスト動的価格設定は、顧客との逐次的なインタラクションに基づいてパーソナライズされた価格を設定することを目的としている。
本稿では,未知のランダムノイズを伴う文脈的動的価格を評価モデルで検討する。
我々の流通自由価格政策は、コンテキスト関数と市場ノイズの両方を同時に学習する。
- 参考スコア(独自算出の注目度): 5.773269033551628
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Contextual dynamic pricing aims to set personalized prices based on
sequential interactions with customers. At each time period, a customer who is
interested in purchasing a product comes to the platform. The customer's
valuation for the product is a linear function of contexts, including product
and customer features, plus some random market noise. The seller does not
observe the customer's true valuation, but instead needs to learn the valuation
by leveraging contextual information and historical binary purchase feedbacks.
Existing models typically assume full or partial knowledge of the random noise
distribution. In this paper, we consider contextual dynamic pricing with
unknown random noise in the valuation model. Our distribution-free pricing
policy learns both the contextual function and the market noise simultaneously.
A key ingredient of our method is a novel perturbed linear bandit framework,
where a modified linear upper confidence bound algorithm is proposed to balance
the exploration of market noise and the exploitation of the current knowledge
for better pricing. We establish the regret upper bound and a matching lower
bound of our policy in the perturbed linear bandit framework and prove a
sub-linear regret bound in the considered pricing problem. Finally, we
demonstrate the superior performance of our policy on simulations and a
real-life auto-loan dataset.
- Abstract(参考訳): context dynamic pricingは、顧客とのシーケンシャルなインタラクションに基づいてパーソナライズされた価格を設定することを目的としている。
各期間に、製品を購入することに興味のある顧客がプラットフォームにやってくる。
製品に対する顧客の評価は、製品や顧客機能を含むコンテキストの線形関数と、無作為な市場のノイズである。
売り手は顧客の真のバリュエーションを観察しないが、文脈情報と歴史的なバイナリ購入フィードバックを活用することでバリュエーションを学ぶ必要がある。
既存のモデルは通常、ランダムノイズ分布の完全または部分的な知識を仮定する。
本稿では,未知のランダムノイズを伴う文脈的動的価格を評価モデルで検討する。
我々の流通自由価格政策は、コンテキスト関数と市場ノイズの両方を同時に学習する。
提案手法の重要な要素は、市場ノイズの探索と現在の知識の活用のバランスをとるために、改良された線形上層信頼度境界アルゴリズムが提案される、新しい摂動線形バンディットフレームワークである。
我々は,線形バンディットフレームワークにおいて,当社のポリシーの上限と下限の一致を定式化し,検討した価格問題に拘束された下限の後悔を証明した。
最後に,シミュレーションと実生活のオートローアンデータセットに関するポリシーの優れた性能を示す。
関連論文リスト
- A Primal-Dual Online Learning Approach for Dynamic Pricing of Sequentially Displayed Complementary Items under Sale Constraints [54.46126953873298]
顧客に対して順次表示される補完アイテムの動的価格設定の問題に対処する。
各項目の価格を個別に最適化するのは効果がないため、補完項目のコヒーレントな価格ポリシーが不可欠である。
実世界のデータからランダムに生成した合成設定を用いて,我々のアプローチを実証的に評価し,制約違反や後悔の観点からその性能を比較した。
論文 参考訳(メタデータ) (2024-07-08T09:55:31Z) - Pricing with Contextual Elasticity and Heteroscedastic Valuation [23.96777734246062]
我々は、顧客がその特徴と価格に基づいて商品を購入するかどうかを決めるオンラインコンテキスト動的価格問題について検討する。
本稿では,機能に基づく価格弾力性の導入により,顧客の期待する需要をモデル化する新たなアプローチを提案する。
我々の結果は、文脈的弾力性とヘテロセダスティックな評価の関係に光を当て、効果的で実用的な価格戦略の洞察を与えました。
論文 参考訳(メタデータ) (2023-12-26T11:07:37Z) - Contextual Dynamic Pricing with Strategic Buyers [93.97401997137564]
戦略的買い手によるコンテキスト動的価格問題について検討する。
売り手は買い手の真の特徴を観察せず、買い手の戦略行動に応じて操作された特徴を観察する。
本稿では,販売者の累積収益を最大化するために,購入者の戦略的行動をオンライン学習に取り入れた戦略的動的価格政策を提案する。
論文 参考訳(メタデータ) (2023-07-08T23:06:42Z) - Structured Dynamic Pricing: Optimal Regret in a Global Shrinkage Model [50.06663781566795]
消費者の嗜好と価格感が時間とともに変化する動的モデルを考える。
我々は,モデルパラメータの順序を事前に把握している透視者と比較して,収益損失が予想される,後悔による動的価格政策の性能を計測する。
提案した政策の最適性を示すだけでなく,政策立案のためには,利用可能な構造情報を組み込むことが不可欠であることを示す。
論文 参考訳(メタデータ) (2023-03-28T00:23:23Z) - A Reinforcement Learning Approach in Multi-Phase Second-Price Auction
Design [158.0041488194202]
多相第2価格オークションにおけるリザーブ価格の最適化について検討する。
売り手の視点からは、潜在的に非現実的な入札者の存在下で、環境を効率的に探索する必要がある。
第三に、売り手のステップごとの収益は未知であり、非線形であり、環境から直接観察することさえできない。
論文 参考訳(メタデータ) (2022-10-19T03:49:05Z) - Online Nonsubmodular Minimization with Delayed Costs: From Full
Information to Bandit Feedback [98.7678704343537]
我々は,オンラインおよび近似的オンライン帯域勾配勾配アルゴリズムのいくつかの変種に対する後悔の保証を,特別な構造を持つ非部分モジュラ関数のクラスに焦点をあてる。
我々は,決定の選択と帰属費用の受け取りの遅れが無拘束である場合でも,エージェントの完全な情報と盗賊のフィードバック設定に対する後悔の限界を導出する。
論文 参考訳(メタデータ) (2022-05-15T08:27:12Z) - Convex Loss Functions for Contextual Pricing with Observational
Posted-Price Data [2.538209532048867]
我々は、販売者が以前に提供された価格のサンプルにアクセス可能な、政治的でない価格問題について検討する。
これは、顧客の評価(支払いの意志)のサンプルが観察される、よく研究された設定とは対照的である。
我々の設定では、観測されたデータは歴史的価格政策の影響を受けており、顧客が代替価格にどう反応したかは分かっていません。
論文 参考訳(メタデータ) (2022-02-16T22:35:39Z) - Loss Functions for Discrete Contextual Pricing with Observational Data [8.661128420558349]
顧客および/または製品の特徴に基づいて、各顧客がコンテキスト化された価格で提供される価格設定について検討する。
顧客の真の価値よりも,各顧客が所定の価格で商品を購入しているかどうかを観察する。
論文 参考訳(メタデータ) (2021-11-18T20:12:57Z) - Stateful Offline Contextual Policy Evaluation and Learning [88.9134799076718]
我々は、シーケンシャルデータから、政治以外の評価と学習について研究する。
動的パーソナライズされた価格設定などの問題の因果構造を形式化する。
本報告では,本クラスにおけるアウト・オブ・サンプル・ポリシーの性能改善について述べる。
論文 参考訳(メタデータ) (2021-10-19T16:15:56Z) - Model Distillation for Revenue Optimization: Interpretable Personalized
Pricing [8.07517029746865]
我々は、複雑なブラックボックス機械学習アルゴリズムから知識を抽出する、カスタマイズされた、規範的なツリーベースアルゴリズムを提案する。
同様のバリュエーションで顧客を分割し、解釈可能性を維持しながら収益を最大化するような価格を定めている。
論文 参考訳(メタデータ) (2020-07-03T18:33:23Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。