論文の概要: FedGS: Federated Gradient Scaling for Heterogeneous Medical Image Segmentation
- arxiv url: http://arxiv.org/abs/2408.11701v1
- Date: Wed, 21 Aug 2024 15:26:21 GMT
- ステータス: 処理完了
- システム内更新日: 2024-08-22 16:28:00.804286
- Title: FedGS: Federated Gradient Scaling for Heterogeneous Medical Image Segmentation
- Title(参考訳): FedGS: 不均一な医用画像分割のためのFederated Gradient Scaling
- Authors: Philip Schutte, Valentina Corbetta, Regina Beets-Tan, Wilson Silva,
- Abstract要約: そこで本研究では,FedGSという新しいFLアグリゲーション手法を提案する。
FedGSは、特に小さな病変に対して、PolypGenとLiTSデータセット間で、FedAvgよりも優れたパフォーマンスを示している。
- 参考スコア(独自算出の注目度): 0.4499833362998489
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Federated Learning (FL) in Deep Learning (DL)-automated medical image segmentation helps preserving privacy by enabling collaborative model training without sharing patient data. However, FL faces challenges with data heterogeneity among institutions, leading to suboptimal global models. Integrating Disentangled Representation Learning (DRL) in FL can enhance robustness by separating data into distinct representations. Existing DRL methods assume heterogeneity lies solely in style features, overlooking content-based variability like lesion size and shape. We propose FedGS, a novel FL aggregation method, to improve segmentation performance on small, under-represented targets while maintaining overall efficacy. FedGS demonstrates superior performance over FedAvg, particularly for small lesions, across PolypGen and LiTS datasets. The code and pre-trained checkpoints are available at the following link: https://github.com/Trustworthy-AI-UU-NKI/Federated-Learning-Disentanglement
- Abstract(参考訳): 深層学習(DL)自動化医療画像セグメンテーションにおけるフェデレーションラーニング(FL)は、患者データを共有せずに協調的なモデルトレーニングを可能にすることにより、プライバシの保護を支援する。
しかし、FLは機関間のデータ不均一性の問題に直面し、最適以下のグローバルモデルに繋がる。
FLにおける拡散表現学習(DRL)の統合は、データを異なる表現に分離することで堅牢性を高めることができる。
既存のDRL法では、異質性はスタイルの特徴にのみ含まれており、病変の大きさや形状のようなコンテンツベースの多様性を見渡せると仮定している。
FLアグリゲーション手法であるFedGSを提案し, 全体の有効性を保ちながら, 小型で表現不足なターゲットでのセグメンテーション性能を向上させる。
FedGSは、特に小さな病変に対して、PolypGenとLiTSデータセット間で、FedAvgよりも優れたパフォーマンスを示している。
コードと事前訓練されたチェックポイントは以下のリンクで利用可能である。
関連論文リスト
- FedMRL: Data Heterogeneity Aware Federated Multi-agent Deep Reinforcement Learning for Medical Imaging [12.307490659840845]
我々は,データの不均一性に対処する新しいマルチエージェント深層強化学習フレームワークであるFedMRLを紹介する。
FedMRLは、クライアント間の公平性を促進するために、新たな損失関数を導入し、最終グローバルモデルのバイアスを防ぐ。
その結果,FedMRLが最先端技術よりも優れていることが示された。
論文 参考訳(メタデータ) (2024-07-08T10:10:07Z) - Federated Learning under Partially Class-Disjoint Data via Manifold Reshaping [64.58402571292723]
我々はFedMRと呼ばれる多様体再構成手法を提案し、局所訓練の特徴空間を校正する。
我々は、FedMRがはるかに高い精度と通信効率を達成することを示すために、さまざまなデータセットに関する広範な実験を行います。
論文 参考訳(メタデータ) (2024-05-29T10:56:13Z) - FedLPPA: Learning Personalized Prompt and Aggregation for Federated Weakly-supervised Medical Image Segmentation [1.6013679829631893]
フェデレートラーニング(FL)は、ポリシーやプライバシの懸念によって引き起こされるデータサイロの課題を効果的に緩和する。
従来の集中型FLモデルは、特に医学的文脈において、多様なマルチセンターデータに対応している。
医用画像セグメンテーションのための不均一な弱い監督を均一に活用するために,学習可能なプロンプトとアグリゲーション(FedLPPA)を備えた新規なパーソナライズFLフレームワークを提案する。
論文 参考訳(メタデータ) (2024-02-27T13:41:32Z) - Unifying and Personalizing Weakly-supervised Federated Medical Image
Segmentation via Adaptive Representation and Aggregation [1.121358474059223]
フェデレートラーニング(FL)は、データプライバシとセキュリティを損なうことなく、複数のサイトが協力して強力なディープモデルをトレーニングすることを可能にする。
微粒な監督を施した弱く監督されたセグメンテーションは、アノテーションコストを下げる大きな可能性を秘めているため、ますます注目されている。
医用画像セグメンテーションのための新しいFLフレームワークであるFedICRAを提案する。
論文 参考訳(メタデータ) (2023-04-12T06:32:08Z) - FedDM: Iterative Distribution Matching for Communication-Efficient
Federated Learning [87.08902493524556]
フェデレートラーニング(FL)は近年、学術や産業から注目を集めている。
我々は,複数の局所的代理関数からグローバルなトレーニング目標を構築するためのFedDMを提案する。
そこで本研究では,各クライアントにデータ集合を構築し,元のデータから得られた損失景観を局所的にマッチングする。
論文 参考訳(メタデータ) (2022-07-20T04:55:18Z) - Label-Efficient Self-Supervised Federated Learning for Tackling Data
Heterogeneity in Medical Imaging [23.08596805950814]
医用画像解析のための頑健でラベル効率の良い自己教師型FLフレームワークを提案する。
具体的には,既存のFLパイプラインに分散自己教師型事前学習パラダイムを導入する。
自己教師付きFLアルゴリズムは,分布外データに対してよく一般化し,限定ラベルのシナリオにおいてより効果的にフェデレーションモデルを学習することを示す。
論文 参考訳(メタデータ) (2022-05-17T18:33:43Z) - MS Lesion Segmentation: Revisiting Weighting Mechanisms for Federated
Learning [92.91544082745196]
フェデレートラーニング(FL)は医用画像解析に広く用いられている。
FLのパフォーマンスは、多発性硬化症(MS)病変セグメンテーションタスクに制限される。
2つの効果的な再重み付け機構によるFLMS病変分割フレームワークを提案する。
論文 参考訳(メタデータ) (2022-05-03T14:06:03Z) - FedMed-GAN: Federated Domain Translation on Unsupervised Cross-Modality
Brain Image Synthesis [55.939957482776194]
我々は、教師なし脳画像合成におけるフェデレートドメイン翻訳のための新しいベンチマーク(FedMed-GAN)を提案する。
FedMed-GANは発電機の性能を犠牲にすることなくモード崩壊を緩和する。
FedMed-GANと他の集中型手法を比較するための総合的な評価を提供する。
論文 参考訳(メタデータ) (2022-01-22T02:50:29Z) - Local Learning Matters: Rethinking Data Heterogeneity in Federated
Learning [61.488646649045215]
フェデレートラーニング(FL)は、クライアントのネットワーク(エッジデバイス)でプライバシ保護、分散ラーニングを行うための有望な戦略である。
論文 参考訳(メタデータ) (2021-11-28T19:03:39Z) - Differentially private federated deep learning for multi-site medical
image segmentation [56.30543374146002]
フェデレートラーニング(FL)のような協調機械学習技術は、データ転送なしで効果的に大規模なデータセット上でモデルのトレーニングを可能にする。
近年のイニシアチブでは、FLで訓練されたセグメンテーションモデルが、局所的に訓練されたモデルと同様のパフォーマンスを達成できることが示されている。
しかし、FLは完全なプライバシ保護技術ではなく、プライバシ中心の攻撃は秘密の患者データを開示することができる。
論文 参考訳(メタデータ) (2021-07-06T12:57:32Z) - Auto-FedAvg: Learnable Federated Averaging for Multi-Institutional
Medical Image Segmentation [7.009650174262515]
フェデレーションラーニング(FL)は、各参加者のプライバシーを維持しながら共同モデルのトレーニングを可能にします。
FedAvgは、FLプロセス中にサーバ上で分散学習されたモデルを集約するために、各クライアントのデータセットサイズに由来する固定重みを使用する標準的なアルゴリズムである。
本研究では,凝集重みを動的に調整した新しいデータ駆動型アプローチ,auto-fedavgを設計した。
論文 参考訳(メタデータ) (2021-04-20T18:29:44Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。