An Empirical Comparison of Vocabulary Expansion and Initialization Approaches for Language Models
- URL: http://arxiv.org/abs/2407.05841v2
- Date: Tue, 22 Oct 2024 00:16:21 GMT
- Title: An Empirical Comparison of Vocabulary Expansion and Initialization Approaches for Language Models
- Authors: Nandini Mundra, Aditya Nanda Kishore, Raj Dabre, Ratish Puduppully, Anoop Kunchukuttan, Mitesh M. Khapra,
- Abstract summary: Language Models (LMs) excel in natural language processing tasks for English but show reduced performance in most other languages.
limited vocabulary coverage in the original model's tokenizer leads to inadequate representation of new languages.
Constrained Word2Vec (CW2V) does not require cross-lingual embeddings.
- Score: 31.231720803637085
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Language Models (LMs) excel in natural language processing tasks for English but show reduced performance in most other languages. This problem is commonly tackled by continually pre-training and fine-tuning these models for said languages. A significant issue in this process is the limited vocabulary coverage in the original model's tokenizer, leading to inadequate representation of new languages and necessitating an expansion of the tokenizer. The initialization of the embeddings corresponding to new vocabulary items presents a further challenge. Current strategies require cross-lingual embeddings and lack a solid theoretical foundation as well as comparisons with strong baselines. In this paper, we first establish theoretically that initializing within the convex hull of existing embeddings is a good initialization, followed by a novel but simple approach, Constrained Word2Vec (CW2V), which does not require cross-lingual embeddings. Our study evaluates different initialization methods for expanding RoBERTa and LLaMA 2 across four languages and five tasks. The results show that CW2V performs equally well or even better than more advanced techniques. Additionally, simpler approaches like multivariate initialization perform on par with these advanced methods indicating that efficient large-scale multilingual continued pretraining can be achieved even with simpler initialization methods. We release our code publicly (https://github.com/AI4Bharat/VocabAdaptation_LLM/tree/CW2V).
Related papers
- OFA: A Framework of Initializing Unseen Subword Embeddings for Efficient Large-scale Multilingual Continued Pretraining [49.213120730582354]
Instead of pretraining multilingual language models from scratch, a more efficient method is to adapt existing pretrained language models (PLMs) to new languages via vocabulary extension and continued pretraining.
We propose a novel framework: $textbfO$ne $textbfF$or $textbfA$ll, which wisely initializes the embeddings of unseen subwords and thus can adapt a PLM to multiple languages efficiently and effectively.
arXiv Detail & Related papers (2023-11-15T10:40:45Z) - Tik-to-Tok: Translating Language Models One Token at a Time: An
Embedding Initialization Strategy for Efficient Language Adaptation [19.624330093598996]
Training monolingual language models for low and mid-resource languages is made challenging by limited and often inadequate pretraining data.
By generalizing over a word translation dictionary encompassing both the source and target languages, we map tokens from the target tokenizer to semantically similar tokens from the source language tokenizer.
We conduct experiments to convert high-resource models to mid- and low-resource languages, namely Dutch and Frisian.
arXiv Detail & Related papers (2023-10-05T11:45:29Z) - Embedding structure matters: Comparing methods to adapt multilingual
vocabularies to new languages [20.17308477850864]
Pre-trained multilingual language models underpin a large portion of modern NLP tools outside of English.
We propose several simple techniques to replace a cross-lingual vocabulary with a compact, language-specific one.
arXiv Detail & Related papers (2023-09-09T04:27:18Z) - Language Model Pre-Training with Sparse Latent Typing [66.75786739499604]
We propose a new pre-training objective, Sparse Latent Typing, which enables the model to sparsely extract sentence-level keywords with diverse latent types.
Experimental results show that our model is able to learn interpretable latent type categories in a self-supervised manner without using any external knowledge.
arXiv Detail & Related papers (2022-10-23T00:37:08Z) - Continual Learning in Multilingual NMT via Language-Specific Embeddings [92.91823064720232]
It consists in replacing the shared vocabulary with a small language-specific vocabulary and fine-tuning the new embeddings on the new language's parallel data.
Because the parameters of the original model are not modified, its performance on the initial languages does not degrade.
arXiv Detail & Related papers (2021-10-20T10:38:57Z) - UNKs Everywhere: Adapting Multilingual Language Models to New Scripts [103.79021395138423]
Massively multilingual language models such as multilingual BERT (mBERT) and XLM-R offer state-of-the-art cross-lingual transfer performance on a range of NLP tasks.
Due to their limited capacity and large differences in pretraining data, there is a profound performance gap between resource-rich and resource-poor target languages.
We propose novel data-efficient methods that enable quick and effective adaptation of pretrained multilingual models to such low-resource languages and unseen scripts.
arXiv Detail & Related papers (2020-12-31T11:37:28Z) - Reusing a Pretrained Language Model on Languages with Limited Corpora
for Unsupervised NMT [129.99918589405675]
We present an effective approach that reuses an LM that is pretrained only on the high-resource language.
The monolingual LM is fine-tuned on both languages and is then used to initialize a UNMT model.
Our approach, RE-LM, outperforms a competitive cross-lingual pretraining model (XLM) in English-Macedonian (En-Mk) and English-Albanian (En-Sq)
arXiv Detail & Related papers (2020-09-16T11:37:10Z) - XCOPA: A Multilingual Dataset for Causal Commonsense Reasoning [68.57658225995966]
Cross-lingual Choice of Plausible Alternatives (XCOPA) is a typologically diverse multilingual dataset for causal commonsense reasoning in 11 languages.
We evaluate a range of state-of-the-art models on this novel dataset, revealing that the performance of current methods falls short compared to translation-based transfer.
arXiv Detail & Related papers (2020-05-01T12:22:33Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.