Quantum error correction of motional dephasing using optical dressing
- URL: http://arxiv.org/abs/2409.04769v1
- Date: Sat, 7 Sep 2024 09:15:41 GMT
- Title: Quantum error correction of motional dephasing using optical dressing
- Authors: Yuechun Jiao, Changcheng Li, Jiabei Fan, Jingxu Bai, XiaoFeng Shi, Suotang Jia, Jianming Zhao, C. Stuart Adams,
- Abstract summary: We demonstrate the effectiveness of a novel protocol on a collective quantum superposition state known as a Rydberg polariton.
We show how our protocol via optical dressing using Raman lasers cancels dephasing and enhances coherence times by more than an order of magnitude.
- Score: 1.8894050583899684
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Maintaining the coherence in quantum systems is interesting in both fundamental physics and quantum information processing. In particular, suppressing the dephasing caused by thermal fluctuations in quantum systems can potentially enable functional quantum devices. Techniques to reduce motional dephasing of quantum superpositions include spin echo and bang-bang. In this paper, we demonstrate the effectiveness of a novel protocol on a collective quantum superposition state known as a Rydberg polariton. These collective states are potentially important in the context of single photon sources, optical transistor, all-optical quantum gates and fast read-out of quantum information. However progress in Rydberg polariton quantum technology has been hindered by fast motional dephasing on which no effective methods exist for undoing it. Here, we show how our protocol via optical dressing using Raman lasers cancels dephasing and enhances coherence times by more than an order of magnitude.
Related papers
- Realizing fracton order from long-range quantum entanglement in programmable Rydberg atom arrays [45.19832622389592]
Storing quantum information requires battling quantum decoherence, which results in a loss of information over time.
To achieve error-resistant quantum memory, one would like to store the information in a quantum superposition of degenerate states engineered in such a way that local sources of noise cannot change one state into another.
We show that this platform also allows to detect and correct certain types of errors en route to the goal of true error-resistant quantum memory.
arXiv Detail & Related papers (2024-07-08T12:46:08Z) - A Method Using Photon Collapse and Entanglement to Transmit Information [13.438312709072457]
We find that measurements cause quantum wave functions to collapse.
By studying the overlooked phenomena of quantum wave function collapse, we find that quantum eigenstate sets may be artificially controlled.
We propose an innovative method for direct information transmission utilizing photon wave function collapse and entanglement.
arXiv Detail & Related papers (2024-06-27T13:22:21Z) - Quantum Optics with Rydberg Superatoms [0.49478969093606673]
Quantum optics based on Rydberg atoms is a powerful platform for light manipulation at the few-photon level.
We review the derivation of the collective coupling between a Rydberg superatom and a single light mode.
We briefly review applications of Rydberg superatoms to quantum optics such as single-photon generation and single-photon subtraction.
arXiv Detail & Related papers (2023-12-06T18:11:04Z) - Avalanche terahertz photon detection in a Rydberg tweezer array [0.0]
We propose a protocol for the amplified detection of low-intensity terahertz radiation using Rydberg tweezer arrays.
During a sensing phase, it harnesses strong terahertz-range transitions between highly excited Rydberg states to capture individual terahertz photons.
During an amplification phase, it exploits the Rydberg facilitation mechanism which converts a single terahertz photon into a substantial signal of Rydberg excitations.
arXiv Detail & Related papers (2023-11-27T23:07:32Z) - Quantum Optical Memory for Entanglement Distribution [52.77024349608834]
Entanglement of quantum states over long distances can empower quantum computing, quantum communications, and quantum sensing.
Over the past two decades, quantum optical memories with high fidelity, high efficiencies, long storage times, and promising multiplexing capabilities have been developed.
arXiv Detail & Related papers (2023-04-19T03:18:51Z) - Quantum process tomography of continuous-variable gates using coherent
states [49.299443295581064]
We demonstrate the use of coherent-state quantum process tomography (csQPT) for a bosonic-mode superconducting circuit.
We show results for this method by characterizing a logical quantum gate constructed using displacement and SNAP operations on an encoded qubit.
arXiv Detail & Related papers (2023-03-02T18:08:08Z) - Quantum vortices of strongly interacting photons [52.131490211964014]
Vortices are hallmark of nontrivial dynamics in nonlinear physics.
We report on the realization of quantum vortices resulting from a strong photon-photon interaction in a quantum nonlinear optical medium.
For three photons, the formation of vortex lines and a central vortex ring attests to a genuine three-photon interaction.
arXiv Detail & Related papers (2023-02-12T18:11:04Z) - Quantum Non-Demolition Photon Counting in a 2d Rydberg Atom Array [0.0]
Rydberg arrays merge the collective behavior of ordered atomic arrays with the controllability and optical nonlinearities of Rydberg systems.
We propose a protocol for quantum non-demolition (QND) photon counting.
arXiv Detail & Related papers (2022-10-19T18:00:03Z) - Correlated steady states and Raman lasing in continuously pumped and
probed atomic ensembles [68.8204255655161]
We consider an ensemble of Alkali atoms that are continuously optically pumped and probed.
Due to the collective scattering of photons at large optical depth, the steady state of atoms does not correspond to an uncorrelated tensor-product state.
We find and characterize regimes of Raman lasing, akin to the model of a superradiant laser.
arXiv Detail & Related papers (2022-05-10T06:54:54Z) - Multiphoton Quantum van Cittert-Zernike Theorem [0.0]
We introduce the quantum van Cittert-Zernike theorem to describe the scattering and interference effects of propagating multiphoton systems.
We show that conditional measurements may enable the all-optical preparation of multiphoton systems with attenuated quantum statistics below the shot-noise limit.
arXiv Detail & Related papers (2022-02-15T01:14:49Z) - Modelling Markovian light-matter interactions for quantum optical
devices in the solid state [0.0]
I analyze fundamental components and processes for quantum optical devices with a focus on solid-state quantum systems.
I make heavy use of an analytic quantum trajectories approach applied to a general Markovian master equation of an optically-active quantum system.
arXiv Detail & Related papers (2021-05-13T23:00:34Z) - Demonstration of quantum advantage by a joint detection receiver for
optical communications using quantum belief propagation on a trapped-ion
device [0.7758302353877525]
We present an experimental realization of a quantum joint detection receiver for binary phase shift keying codewords of a 3-bit linear tree code.
The receiver, translated to a quantum circuit, was experimentally implemented on a trapped-ion device.
We provide an experimental framework that surpasses the quantum limit on the minimum average decoding error probability.
arXiv Detail & Related papers (2021-02-25T18:05:31Z) - Imaginary Time Propagation on a Quantum Chip [50.591267188664666]
Evolution in imaginary time is a prominent technique for finding the ground state of quantum many-body systems.
We propose an algorithm to implement imaginary time propagation on a quantum computer.
arXiv Detail & Related papers (2021-02-24T12:48:00Z) - Information Scrambling in Computationally Complex Quantum Circuits [56.22772134614514]
We experimentally investigate the dynamics of quantum scrambling on a 53-qubit quantum processor.
We show that while operator spreading is captured by an efficient classical model, operator entanglement requires exponentially scaled computational resources to simulate.
arXiv Detail & Related papers (2021-01-21T22:18:49Z) - Direct Quantum Communications in the Presence of Realistic Noisy
Entanglement [69.25543534545538]
We propose a novel quantum communication scheme relying on realistic noisy pre-shared entanglement.
Our performance analysis shows that the proposed scheme offers competitive QBER, yield, and goodput.
arXiv Detail & Related papers (2020-12-22T13:06:12Z) - Quantum information spreading in a disordered quantum walk [50.591267188664666]
We design a quantum probing protocol using Quantum Walks to investigate the Quantum Information spreading pattern.
We focus on the coherent static and dynamic disorder to investigate anomalous and classical transport.
Our results show that a Quantum Walk can be considered as a readout device of information about defects and perturbations occurring in complex networks.
arXiv Detail & Related papers (2020-10-20T20:03:19Z) - Topological photon pairs in a superconducting quantum metamaterial [44.62475518267084]
We use an array of superconducting qubits to engineer a nontrivial quantum metamaterial.
By performing microwave spectroscopy of the fabricated array, we experimentally observe the spectrum of elementary excitations.
We find not only the single-photon topological states but also the bands of exotic bound photon pairs arising due to the inherent anharmonicity of qubits.
arXiv Detail & Related papers (2020-06-23T07:04:27Z) - Quantum Reflections of Nonlocal Optical Solitons in a Cold Rydberg
Atomic Gas [5.8633462791003]
Quantum reflection refers to a non-vanishing reflection probability in the absence of a classically turning point.
We propose a scheme to realize a quantum reflection of nonlocal nonlinear optical beams in a cold Rydberg atomic gas.
arXiv Detail & Related papers (2020-05-20T12:41:20Z) - Quantum metamaterial for nondestructive microwave photon counting [52.77024349608834]
We introduce a single-photon detector design operating in the microwave domain based on a weakly nonlinear metamaterial.
We show that the single-photon detection fidelity increases with the length of the metamaterial to approach one at experimentally realistic lengths.
In stark contrast to conventional photon detectors operating in the optical domain, the photon is not destroyed by the detection and the photon wavepacket is minimally disturbed.
arXiv Detail & Related papers (2020-05-13T18:00:03Z) - Self-induced transparency in warm and strongly interacting Rydberg gases [1.433758865948252]
We study dispersive optical nonlinearities of short pulses propagating in high number density, warm atomic vapors.
We show that using fast Rabi flopping and strong Rydberg atom interactions, both in the order of gigahertz, can overcome the Doppler effect.
In this regime, self-induced transparency emerges when areas of the nanosecond pulse are determined primarily by the Rydberg atom interaction.
arXiv Detail & Related papers (2020-04-28T16:16:01Z) - Quantum Hall phase emerging in an array of atoms interacting with
photons [101.18253437732933]
Topological quantum phases underpin many concepts of modern physics.
Here, we reveal that the quantum Hall phase with topological edge states, spectral Landau levels and Hofstadter butterfly can emerge in a simple quantum system.
Such systems, arrays of two-level atoms (qubits) coupled to light being described by the classical Dicke model, have recently been realized in experiments with cold atoms and superconducting qubits.
arXiv Detail & Related papers (2020-03-18T14:56:39Z) - Quantum Information Scrambling in a Superconducting Qutrit Processor [0.0]
Delocalization of quantum information in strongly-interacting many-body systems has recently begun to unite our understanding of black hole dynamics, transport in exotic non-Fermi liquids, and many-body analogs of quantum chaos.
We implement two-qutrit scrambling operations and embed them in a five-qutrit teleportation algorithm to measure the associated out-time-ordered correlation functions.
arXiv Detail & Related papers (2020-03-06T16:36:23Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.