Purcell enhancement and spin spectroscopy of silicon vacancy centers in silicon carbide using an ultra-small mode-volume plasmonic cavity
- URL: http://arxiv.org/abs/2407.05951v1
- Date: Mon, 8 Jul 2024 13:51:10 GMT
- Title: Purcell enhancement and spin spectroscopy of silicon vacancy centers in silicon carbide using an ultra-small mode-volume plasmonic cavity
- Authors: Jae-Pil So, Jialun Luo, Jaehong Choi, Brendan McCullian, Gregory D. Fuchs,
- Abstract summary: We report the integration of V$_Si$ centers with a plasmonic nanocavity to enhance the emission.
The results highlight the potential of nanophotonic structures for advancing quantum networking technologies.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Silicon vacancy (V$_{Si}$) centers in 4H-silicon carbide have emerged as a strong candidate for quantum networking applications due to their robust electronic and optical properties including a long spin coherence lifetime and bright, stable emission. Here, we report the integration of V$_{Si}$ centers with a plasmonic nanocavity to Purcell enhance the emission, which is critical for scalable quantum networking. Employing a simple fabrication process, we demonstrate plasmonic cavities that support a nanoscale mode volume and exhibit an increase in the spontaneous emission rate with a measured Purcell factor of up to 48. In addition to investigating the optical resonance modes, we demonstrate that an improvement in the optical stability of the spin-preserving resonant optical transitions relative to the radiation-limited value. The results highlight the potential of nanophotonic structures for advancing quantum networking technologies and emphasizes the importance of optimizing emitter-cavity interactions for efficient quantum photonic applications.
Related papers
- Purcell-enhanced single-photon emission from InAs/GaAs quantum dots coupled to broadband cylindrical nanocavities [0.0]
In this study, we demonstrate up to a 38-fold enhancement in the emission rate of InAs QDs by coupling them to metal-clad GaAs nanopillars.
These cavities, featuring a sub-wavelength mode volume of 4.5x10-4 (lambda/n)3 and quality factor of 62, enable Purcell-enhanced single-photon emission across a large bandwidth of 15 nm.
arXiv Detail & Related papers (2024-07-16T12:06:30Z) - Site-Controlled Purcell-Induced Bright Single Photon Emitters in Hexagonal Boron Nitride [62.170141783047974]
Single photon emitters hosted in hexagonal boron nitride (hBN) are essential building blocks for quantum photonic technologies that operate at room temperature.
We experimentally demonstrate large-area arrays of plasmonic nanoresonators for Purcell-induced site-controlled SPEs.
Our results offer arrays of bright, heterogeneously integrated quantum light sources, paving the way for robust and scalable quantum information systems.
arXiv Detail & Related papers (2024-05-03T23:02:30Z) - Purcell enhancement of single-photon emitters in silicon [68.8204255655161]
Individual spins that are coupled to telecommunication photons offer unique promise for distributed quantum information processing.
We implement such an interface by integrating erbium dopants into a nanophotonic silicon resonator.
We observe optical Rabi oscillations and single-photon emission with a 78-fold Purcell enhancement.
arXiv Detail & Related papers (2023-01-18T19:38:38Z) - Spin-optical dynamics and quantum efficiency of single V1 center in
silicon carbide [1.6492256668939613]
We study the spin-optical dynamics of single silicon vacancy center at hexagonal lattice sites, namely V1, in 4H-polytype silicon carbide.
By utilizing resonant and above-resonant sub-lifetime pulsed excitation, we determine spin-dependent excited-state lifetimes and intersystem-crossing rates.
arXiv Detail & Related papers (2022-03-15T18:12:17Z) - Nanofabricated and integrated colour centres in silicon carbide with
high-coherence spin-optical properties [1.3246119976070139]
We demonstrate nanoscale fabrication of silicon vacancy centres (VSi) in 4H-SiC without deterioration of their intrinsic spin-optical properties.
We show nearly transform limited photon emission and record spin coherence times for single defects generated via ion implantation and in triangular cross section waveguides.
For the latter, we show further controlled operations on nearby nuclear spin qubits, which is crucial for fault-tolerant quantum information distribution.
arXiv Detail & Related papers (2021-09-10T08:42:14Z) - Room temperature single-photon emitters in silicon nitride [97.75917079876487]
We report on the first-time observation of room-temperature single-photon emitters in silicon nitride (SiN) films grown on silicon dioxide substrates.
As SiN has recently emerged as one of the most promising materials for integrated quantum photonics, the proposed platform is suitable for scalable fabrication of quantum on-chip devices.
arXiv Detail & Related papers (2021-04-16T14:20:11Z) - Hybrid quantum photonics based on artificial atoms placed inside one
hole of a photonic crystal cavity [47.187609203210705]
Hybrid quantum photonics with SiV$-$-containing nanodiamonds inside one hole of a one-dimensional, free-standing, Si$_3$N$_4$-based photonic crystal cavity is presented.
The resulting photon flux is increased by more than a factor of 14 as compared to free-space.
Results mark an important step to realize quantum network nodes based on hybrid quantum photonics with SiV$-$- center in nanodiamonds.
arXiv Detail & Related papers (2020-12-21T17:22:25Z) - Resonant Excitation and Purcell Enhancement of Coherent Nitrogen-Vacancy
Centers Coupled to a Fabry-P\'{e}rot Micro-Cavity [0.0]
nitrogen-vacancy (NV) center in diamond has been established as a prime building block for quantum networks.
Poor optical coherence of near-surface NV centers has so far prevented their resonant optical control, as would be required for entanglement generation.
We demonstrate resonant addressing of individual, fiber-cavity-coupled NV centers, and collection of their Purcell-enhanced coherent photon emission.
arXiv Detail & Related papers (2020-09-17T10:48:16Z) - Optical repumping of resonantly excited quantum emitters in hexagonal
boron nitride [52.77024349608834]
We present an optical co-excitation scheme which uses a weak non-resonant laser to reduce transitions to a dark state and amplify the photoluminescence from quantum emitters in hexagonal boron nitride (hBN)
Our results are important for the deployment of atom-like defects in hBN as reliable building blocks for quantum photonic applications.
arXiv Detail & Related papers (2020-09-11T10:15:22Z) - Coherent and Purcell-enhanced emission from erbium dopants in a
cryogenic high-Q resonator [68.8204255655161]
A 19 micrometer thin erbium-doped crystal is integrated into a cryogenic Fabry-Perot resonator with a quality factor of nine million.
Our system enables coherent and efficient nodes for long-distance quantum networks.
arXiv Detail & Related papers (2020-06-25T07:53:16Z) - Dynamic control of Purcell enhanced emission of erbium ions in
nanoparticles [0.0]
We demonstrate the control of the Purcell enhanced emission of a small ensemble of erbium ions doped into nanoparticles.
We can tune the cavity on- and out of-resonance by controlling its length with sub-nanometer precision.
This allows us to shape in real time the Purcell enhanced emission of the ions and to achieve full control over the emitted photons' waveforms.
arXiv Detail & Related papers (2020-01-23T14:09:55Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.