Purcell-enhanced single-photon emission from InAs/GaAs quantum dots coupled to broadband cylindrical nanocavities
- URL: http://arxiv.org/abs/2407.11642v2
- Date: Tue, 13 Aug 2024 13:48:36 GMT
- Title: Purcell-enhanced single-photon emission from InAs/GaAs quantum dots coupled to broadband cylindrical nanocavities
- Authors: Abhiroop Chellu, Subhajit Bej, Hanna Wahl, Hermann Kahle, Topi Uusitalo, Roosa Hytönen, Heikki Rekola, Jouko Lang, Eva Schöll, Lukas Hanschke, Patricia Kallert, Tobias Kipp, Christian Strelow, Marjukka Tuominen, Klaus D. Jöns, Petri Karvinen, Tapio Niemi, Mircea Guina, Teemu Hakkarainen,
- Abstract summary: In this study, we demonstrate up to a 38-fold enhancement in the emission rate of InAs QDs by coupling them to metal-clad GaAs nanopillars.
These cavities, featuring a sub-wavelength mode volume of 4.5x10-4 (lambda/n)3 and quality factor of 62, enable Purcell-enhanced single-photon emission across a large bandwidth of 15 nm.
- Score: 0.0
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: On-chip emitters that generate single and entangled photons are essential for photonic quantum information processing technologies. Semiconductor quantum dots (QDs) are attractive candidates that emit high-quality quantum states of light, however at a rate limited by their spontaneous radiative lifetime. In this study, we utilize the Purcell effect to demonstrate up to a 38-fold enhancement in the emission rate of InAs QDs by coupling them to metal-clad GaAs nanopillars. These cavities, featuring a sub-wavelength mode volume of 4.5x10-4 ({\lambda}/n)3 and quality factor of 62, enable Purcell-enhanced single-photon emission across a large bandwidth of 15 nm with a multi-photon emission probability as low as 0.5 %. The broadband nature of the cavity eliminates the need for implementing tuning mechanisms typically required to achieve QD-cavity resonance, thus relaxing fabrication constraints. Ultimately, this QD-cavity architecture represents a significant stride towards developing solid-state quantum emitters generating near-ideal single-photon states at GHz-level repetition rates.
Related papers
- Cavity-Quantum Electrodynamics with Moiré Flatband Photonic Crystals [35.119260614523256]
A quantum dot can be tuned by a factor of 40, ranging from 42 ps to 1692 ps, which is attributed to strong Purcell enhancement and Purcell inhibition effects.
Our findings pave the way for moir'e flatband cavity-enhanced quantum light sources, quantum optical switches, and quantum nodes for quantum internet applications.
arXiv Detail & Related papers (2024-11-25T18:52:11Z) - Purcell enhancement and spin spectroscopy of silicon vacancy centers in silicon carbide using an ultra-small mode-volume plasmonic cavity [0.0]
We report the integration of V$_Si$ centers with a plasmonic nanocavity to enhance the emission.
The results highlight the potential of nanophotonic structures for advancing quantum networking technologies.
arXiv Detail & Related papers (2024-07-08T13:51:10Z) - Site-Controlled Purcell-Induced Bright Single Photon Emitters in Hexagonal Boron Nitride [62.170141783047974]
Single photon emitters hosted in hexagonal boron nitride (hBN) are essential building blocks for quantum photonic technologies that operate at room temperature.
We experimentally demonstrate large-area arrays of plasmonic nanoresonators for Purcell-induced site-controlled SPEs.
Our results offer arrays of bright, heterogeneously integrated quantum light sources, paving the way for robust and scalable quantum information systems.
arXiv Detail & Related papers (2024-05-03T23:02:30Z) - Tunable quantum dots in monolithic Fabry-Perot microcavities for
high-performance single-photon sources [13.880332867320176]
Cavity-enhanced single quantum dots (QDs) are the main approach towards ultra-high-performance solid-state quantum light sources.
Here we have successfully integrated miniaturized Fabry-Perot microcavities with a piezoelectric actuator.
We have demonstrated a bright single photon source derived from a deterministically coupled QD within this microcavity.
arXiv Detail & Related papers (2023-09-24T15:06:47Z) - Observation of large spontaneous emission rate enhancement of quantum
dots in a broken-symmetry slow-light waveguide [0.0]
We demonstrate a nanophotonic waveguide platform with embedded quantum dots (QDs)
The design uses slow-light effects in a glide-plane photonic crystal waveguide with QD tuning to match the emission frequency to the slow-light region.
We then demonstrate a 5 fold Purcell enhancement for a dot with high degree of chiral coupling to waveguide modes.
arXiv Detail & Related papers (2022-08-12T18:42:16Z) - High emission rate from a Purcell-enhanced, triggered source of pure
single photons in the telecom C-band [0.0]
We present an InAs/InGaAs/GaAs quantum dot emitting in the telecom C-band coupled to a circular Bragg grating.
The Purcell enhancement of the emission enables a simultaneously high brightness with a fiber-coupled single-photon count rate of 13.9MHz.
arXiv Detail & Related papers (2022-07-26T13:46:39Z) - Silicon nitride waveguides with intrinsic single-photon emitters for
integrated quantum photonics [97.5153823429076]
We show the first successful coupling of photons from intrinsic single-photon emitters in SiN to monolithically integrated waveguides made of the same material.
Results pave the way toward the realization of scalable, technology-ready quantum photonic integrated circuitry.
arXiv Detail & Related papers (2022-05-17T16:51:29Z) - Phonon dephasing and spectral diffusion of quantum emitters in hexagonal
Boron Nitride [52.915502553459724]
Quantum emitters in hexagonal boron nitride (hBN) are emerging as bright and robust sources of single photons for applications in quantum optics.
We study phonon dephasing and spectral diffusion of quantum emitters in hBN via resonant excitation spectroscopy at cryogenic temperatures.
arXiv Detail & Related papers (2021-05-25T05:56:18Z) - Hybrid quantum photonics based on artificial atoms placed inside one
hole of a photonic crystal cavity [47.187609203210705]
Hybrid quantum photonics with SiV$-$-containing nanodiamonds inside one hole of a one-dimensional, free-standing, Si$_3$N$_4$-based photonic crystal cavity is presented.
The resulting photon flux is increased by more than a factor of 14 as compared to free-space.
Results mark an important step to realize quantum network nodes based on hybrid quantum photonics with SiV$-$- center in nanodiamonds.
arXiv Detail & Related papers (2020-12-21T17:22:25Z) - Optical repumping of resonantly excited quantum emitters in hexagonal
boron nitride [52.77024349608834]
We present an optical co-excitation scheme which uses a weak non-resonant laser to reduce transitions to a dark state and amplify the photoluminescence from quantum emitters in hexagonal boron nitride (hBN)
Our results are important for the deployment of atom-like defects in hBN as reliable building blocks for quantum photonic applications.
arXiv Detail & Related papers (2020-09-11T10:15:22Z) - Coherent and Purcell-enhanced emission from erbium dopants in a
cryogenic high-Q resonator [68.8204255655161]
A 19 micrometer thin erbium-doped crystal is integrated into a cryogenic Fabry-Perot resonator with a quality factor of nine million.
Our system enables coherent and efficient nodes for long-distance quantum networks.
arXiv Detail & Related papers (2020-06-25T07:53:16Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.