論文の概要: Deform-Mamba Network for MRI Super-Resolution
- arxiv url: http://arxiv.org/abs/2407.05969v1
- Date: Mon, 8 Jul 2024 14:07:26 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-09 15:30:42.652899
- Title: Deform-Mamba Network for MRI Super-Resolution
- Title(参考訳): MRI超解像のためのデフォルム・マンバネットワーク
- Authors: Zexin Ji, Beiji Zou, Xiaoyan Kui, Pierre Vera, Su Ruan,
- Abstract要約: MR画像の超解像のための新しいアーキテクチャDeform-Mambaを提案する。
変形ブロックと視覚マンバブロックの2つの分岐からなるデフォルム・マンバエンコーダを開発する。
コンテンツ適応型ローカルかつ効率的なグローバル情報を含むエンコーダの抽出された特徴により、視覚的Mambaデコーダは最終的に高品質なMR画像を生成する。
- 参考スコア(独自算出の注目度): 7.97504951029884
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In this paper, we propose a new architecture, called Deform-Mamba, for MR image super-resolution. Unlike conventional CNN or Transformer-based super-resolution approaches which encounter challenges related to the local respective field or heavy computational cost, our approach aims to effectively explore the local and global information of images. Specifically, we develop a Deform-Mamba encoder which is composed of two branches, modulated deform block and vision Mamba block. We also design a multi-view context module in the bottleneck layer to explore the multi-view contextual content. Thanks to the extracted features of the encoder, which include content-adaptive local and efficient global information, the vision Mamba decoder finally generates high-quality MR images. Moreover, we introduce a contrastive edge loss to promote the reconstruction of edge and contrast related content. Quantitative and qualitative experimental results indicate that our approach on IXI and fastMRI datasets achieves competitive performance.
- Abstract(参考訳): 本稿では,MR画像の超解像のための新しいアーキテクチャDeform-Mambaを提案する。
従来のCNNやTransformerベースの超解像法とは異なり,画像の局所的・大域的情報を効果的に探索することを目的としている。
具体的には,2つの分岐,変調デフォルムブロックと視覚マンバブロックからなるデフォルム・マンバエンコーダを開発する。
また、ボトルネック層内にマルチビューコンテキストモジュールを設計し、マルチビューコンテキストコンテンツについて検討する。
コンテンツ適応型ローカルかつ効率的なグローバル情報を含むエンコーダの抽出された特徴により、視覚的Mambaデコーダは最終的に高品質なMR画像を生成する。
さらに、エッジとコントラスト関連コンテンツの再構成を促進するために、コントラスト付きエッジロスを導入する。
定量および定性的な実験結果から,IXIデータセットと高速MRIデータセットへのアプローチが競合性能を実現することが示唆された。
関連論文リスト
- INF-LLaVA: Dual-perspective Perception for High-Resolution Multimodal Large Language Model [71.50973774576431]
本稿では,高解像度画像認識のための新しいMLLM INF-LLaVAを提案する。
我々はDCM(Dual-perspective Cropping Module)を導入し、各サブイメージが局所的な視点から連続的な詳細を含むことを保証する。
第2に,グローバルな特徴と局所的な特徴の相互強化を可能にするDEM(Dual-perspective Enhancement Module)を導入する。
論文 参考訳(メタデータ) (2024-07-23T06:02:30Z) - Self-Prior Guided Mamba-UNet Networks for Medical Image Super-Resolution [7.97504951029884]
医用画像超解像のための自己優先型マンバ-UNetネットワーク(SMamba-UNet)を提案する。
提案手法は,Mamba-UNetネットワーク下での自己優先型マルチスケールコンテキスト特徴を学習することを目的としている。
論文 参考訳(メタデータ) (2024-07-08T14:41:53Z) - CU-Mamba: Selective State Space Models with Channel Learning for Image Restoration [7.292363114816646]
本稿では,二つの状態空間モデルフレームワークをU-Netアーキテクチャに組み込んだChannel-Aware U-Shaped Mambaモデルを紹介する。
実験は、CU-Mambaが既存の最先端手法よりも優れていることを検証する。
論文 参考訳(メタデータ) (2024-04-17T22:02:22Z) - Multi-view Aggregation Network for Dichotomous Image Segmentation [76.75904424539543]
Dichotomous Image (DIS) は近年,高解像度自然画像からの高精度物体分割に向けて出現している。
既存の手法は、グローバルなローカライゼーションと局所的な洗練を徐々に完了させるために、退屈な複数のエンコーダ・デコーダストリームとステージに依存している。
これに触発されて、我々は多視点オブジェクト認識問題としてdisをモデル化し、擬似多視点アグリゲーションネットワーク(MVANet)を提供する。
一般的なdis-5Kデータセットの実験では、我々のMVANetは精度と速度の両方で最先端の手法を大きく上回っている。
論文 参考訳(メタデータ) (2024-04-11T03:00:00Z) - VmambaIR: Visual State Space Model for Image Restoration [36.11385876754612]
VmambaIRは、画像復元タスクに線形に複雑な状態空間モデル(SSM)を導入する。
VmambaIRは、より少ない計算資源とパラメータで最先端(SOTA)性能を達成する。
論文 参考訳(メタデータ) (2024-03-18T02:38:55Z) - Cross-View Hierarchy Network for Stereo Image Super-Resolution [14.574538513341277]
ステレオ画像スーパーレゾリューションは、ビュー間の相補的な情報を活用することにより、高解像度ステレオ画像ペアの品質を向上させることを目的としている。
ステレオ画像超解法(CVHSSR)のためのクロスビュー階層ネットワーク(Cross-View-Hierarchy Network)という新しい手法を提案する。
CVHSSRは、パラメータを減らしながら、他の最先端手法よりも最高のステレオ画像超解像性能を達成する。
論文 参考訳(メタデータ) (2023-04-13T03:11:30Z) - Cross-receptive Focused Inference Network for Lightweight Image
Super-Resolution [64.25751738088015]
トランスフォーマーに基づく手法は、単一画像超解像(SISR)タスクにおいて顕著な性能を示した。
動的に特徴を抽出するために文脈情報を組み込む必要がある変換器は無視される。
我々は,CNNとTransformerを混合したCTブロックのカスケードで構成される,軽量なクロスレセプティブ・フォーカスド・推論・ネットワーク(CFIN)を提案する。
論文 参考訳(メタデータ) (2022-07-06T16:32:29Z) - CM-GAN: Image Inpainting with Cascaded Modulation GAN and Object-Aware
Training [112.96224800952724]
複雑な画像に大きな穴をあける際の可視像構造を生成するためのカスケード変調GAN(CM-GAN)を提案する。
各デコーダブロックにおいて、まず大域変調を適用し、粗い意味認識合成構造を行い、次に大域変調の出力に空間変調を適用し、空間適応的に特徴写像を更に調整する。
さらに,ネットワークがホール内の新たな物体を幻覚させるのを防ぐため,実世界のシナリオにおける物体除去タスクのニーズを満たすために,オブジェクト認識型トレーニングスキームを設計する。
論文 参考訳(メタデータ) (2022-03-22T16:13:27Z) - HUMUS-Net: Hybrid unrolled multi-scale network architecture for
accelerated MRI reconstruction [38.0542877099235]
HUMUS-Netは、暗黙のバイアスと畳み込みの効率を、無ロールでマルチスケールのネットワークにおけるTransformerブロックのパワーと組み合わせたハイブリッドアーキテクチャである。
我々のネットワークは、最も広く公開されているMRIデータセットである高速MRIデータセット上で、新しい最先端技術を確立する。
論文 参考訳(メタデータ) (2022-03-15T19:26:29Z) - Image-specific Convolutional Kernel Modulation for Single Image
Super-resolution [85.09413241502209]
本稿では,新しい画像特異的畳み込み変調カーネル(IKM)を提案する。
我々は、画像や特徴のグローバルな文脈情報を利用して、畳み込みカーネルを適応的に調整するための注意重みを生成する。
単一画像超解像実験により,提案手法は最先端手法よりも優れた性能を示した。
論文 参考訳(メタデータ) (2021-11-16T11:05:10Z) - Learning Enriched Features for Real Image Restoration and Enhancement [166.17296369600774]
畳み込みニューラルネットワーク(CNN)は、画像復元作業における従来のアプローチよりも劇的に改善されている。
ネットワーク全体を通して空間的精度の高い高解像度表現を維持することを目的とした,新しいアーキテクチャを提案する。
提案手法は,高解像度の空間的詳細を同時に保存しながら,複数のスケールからの文脈情報を組み合わせた豊富な特徴集合を学習する。
論文 参考訳(メタデータ) (2020-03-15T11:04:30Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。