論文の概要: CU-Mamba: Selective State Space Models with Channel Learning for Image Restoration
- arxiv url: http://arxiv.org/abs/2404.11778v1
- Date: Wed, 17 Apr 2024 22:02:22 GMT
- ステータス: 処理完了
- システム内更新日: 2024-04-19 13:30:32.930911
- Title: CU-Mamba: Selective State Space Models with Channel Learning for Image Restoration
- Title(参考訳): CU-Mamba:画像復元のためのチャネル学習による選択状態空間モデル
- Authors: Rui Deng, Tianpei Gu,
- Abstract要約: 本稿では,二つの状態空間モデルフレームワークをU-Netアーキテクチャに組み込んだChannel-Aware U-Shaped Mambaモデルを紹介する。
実験は、CU-Mambaが既存の最先端手法よりも優れていることを検証する。
- 参考スコア(独自算出の注目度): 7.292363114816646
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Reconstructing degraded images is a critical task in image processing. Although CNN and Transformer-based models are prevalent in this field, they exhibit inherent limitations, such as inadequate long-range dependency modeling and high computational costs. To overcome these issues, we introduce the Channel-Aware U-Shaped Mamba (CU-Mamba) model, which incorporates a dual State Space Model (SSM) framework into the U-Net architecture. CU-Mamba employs a Spatial SSM module for global context encoding and a Channel SSM component to preserve channel correlation features, both in linear computational complexity relative to the feature map size. Extensive experimental results validate CU-Mamba's superiority over existing state-of-the-art methods, underscoring the importance of integrating both spatial and channel contexts in image restoration.
- Abstract(参考訳): 劣化画像の再構成は画像処理において重要な課題である。
この分野ではCNNやTransformerベースのモデルが一般的であるが、不適切な長距離依存性モデリングや高い計算コストなど固有の制約がある。
これらの問題を克服するために、U-Netアーキテクチャに2つの状態空間モデル(SSM)フレームワークを組み込んだChannel-Aware U-Shaped Mamba(CU-Mamba)モデルを導入する。
CU-Mambaは、グローバルなコンテキストエンコーディングのための空間SSMモジュールとチャネルSSMコンポーネントを使用して、チャネル相関機能を保存している。
CU-Mambaが既存の最先端手法よりも優れており、画像復元における空間的・チャネル的コンテキストの統合の重要性が強調されている。
関連論文リスト
- CMamba: Learned Image Compression with State Space Models [31.10785880342252]
本稿では,コンボリューションと状態空間モデル(SSM)をベースとした画像圧縮フレームワークを提案する。
具体的には、CMambaはContent-Adaptive SSM(CA-SSM)モジュールとContext-Aware Entropy(CAE)モジュールの2つの重要なコンポーネントを紹介している。
実験の結果,CMambaは高い速度歪み性能が得られることがわかった。
論文 参考訳(メタデータ) (2025-02-07T15:07:04Z) - STNMamba: Mamba-based Spatial-Temporal Normality Learning for Video Anomaly Detection [48.997518615379995]
ビデオ異常検出(VAD)は、インテリジェントなビデオシステムの可能性から広く研究されている。
CNNやトランスフォーマーをベースとした既存の手法の多くは、依然としてかなりの計算負荷に悩まされている。
空間的時間的正規性の学習を促進するために,STNMambaという軽量で効果的なネットワークを提案する。
論文 参考訳(メタデータ) (2024-12-28T08:49:23Z) - Multi-dimensional Visual Prompt Enhanced Image Restoration via Mamba-Transformer Aggregation [4.227991281224256]
本稿では,計算効率を犠牲にすることなく,MambaとTransformerの相補的な利点を十分に活用することを提案する。
マンバの選択的走査機構は空間モデリングに焦点をあて、長距離空間依存のキャプチャを可能にする。
トランスフォーマーの自己保持機構は、画像の空間次元と二次的な成長の重荷を回避し、チャネルモデリングに焦点をあてる。
論文 参考訳(メタデータ) (2024-12-20T12:36:34Z) - SEM-Net: Efficient Pixel Modelling for image inpainting with Spatially Enhanced SSM [11.447968918063335]
画像の塗装は、画像の既知の領域の情報に基づいて、部分的に損傷した画像の修復を目的としている。
SEM-Netは、新しいビジュアル・ステート・スペース・モデル(SSM)ビジョン・ネットワークであり、画像の劣化をピクセルレベルでモデル化し、状態空間における長距離依存(LRD)をキャプチャする。
論文 参考訳(メタデータ) (2024-11-10T00:35:14Z) - Cross-Scan Mamba with Masked Training for Robust Spectral Imaging [51.557804095896174]
本研究では,空間スペクトルSSMを用いたクロススキャンマンバ(CS-Mamba)を提案する。
実験の結果, CS-Mambaは最先端の性能を達成し, マスク付きトレーニング手法によりスムーズな特徴を再構築し, 視覚的品質を向上させることができた。
論文 参考訳(メタデータ) (2024-08-01T15:14:10Z) - Efficient Visual State Space Model for Image Deblurring [83.57239834238035]
畳み込みニューラルネットワーク(CNN)とビジョントランスフォーマー(ViT)は、画像復元において優れた性能を発揮している。
本稿では,画像のデブロアに対する簡易かつ効果的な視覚状態空間モデル(EVSSM)を提案する。
論文 参考訳(メタデータ) (2024-05-23T09:13:36Z) - IRSRMamba: Infrared Image Super-Resolution via Mamba-based Wavelet Transform Feature Modulation Model [7.842507196763463]
IRSRMambaはマルチスケール適応のためのウェーブレット変換特徴変調を統合する新しいフレームワークである。
IRSRMambaはPSNR、SSIM、知覚品質において最先端の手法より優れている。
この研究は、高忠実度赤外線画像強調のための有望な方向として、Mambaベースのアーキテクチャを確立する。
論文 参考訳(メタデータ) (2024-05-16T07:49:24Z) - WaterMamba: Visual State Space Model for Underwater Image Enhancement [17.172623370407155]
水中イメージングは、光の伝播や水中の吸収に影響を及ぼす要因によって、しばしば品質の低下に悩まされる。
画像品質を向上させるため、畳み込みニューラルネットワーク(CNN)とトランスフォーマーに基づく水中画像強調法(UIE)が提案されている。
計算複雑性と高度水中画像劣化を考慮して,UIEの線形計算複雑性を持つ状態空間モデルであるWaterMambaを提案する。
論文 参考訳(メタデータ) (2024-05-14T08:26:29Z) - Frequency-Assisted Mamba for Remote Sensing Image Super-Resolution [49.902047563260496]
我々は、リモートセンシング画像(RSI)の超高解像度化のために、視覚状態空間モデル(Mamba)を統合するための最初の試みを開発した。
より優れたSR再構築を実現するため,FMSRと呼ばれる周波数支援型Mambaフレームワークを考案した。
我々のFMSRは、周波数選択モジュール(FSM)、ビジョン状態空間モジュール(VSSM)、ハイブリッドゲートモジュール(HGM)を備えた多層融合アーキテクチャを備えている。
論文 参考訳(メタデータ) (2024-05-08T11:09:24Z) - MamMIL: Multiple Instance Learning for Whole Slide Images with State Space Models [56.37780601189795]
本稿では,WSI分析のためのフレームワークMamMILを提案する。
私たちは各WSIを非指向グラフとして表現します。
マンバが1次元シーケンスしか処理できない問題に対処するために、トポロジ対応の走査機構を提案する。
論文 参考訳(メタデータ) (2024-03-08T09:02:13Z) - CM-GAN: Image Inpainting with Cascaded Modulation GAN and Object-Aware
Training [112.96224800952724]
複雑な画像に大きな穴をあける際の可視像構造を生成するためのカスケード変調GAN(CM-GAN)を提案する。
各デコーダブロックにおいて、まず大域変調を適用し、粗い意味認識合成構造を行い、次に大域変調の出力に空間変調を適用し、空間適応的に特徴写像を更に調整する。
さらに,ネットワークがホール内の新たな物体を幻覚させるのを防ぐため,実世界のシナリオにおける物体除去タスクのニーズを満たすために,オブジェクト認識型トレーニングスキームを設計する。
論文 参考訳(メタデータ) (2022-03-22T16:13:27Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。