論文の概要: Surprising gender biases in GPT
- arxiv url: http://arxiv.org/abs/2407.06003v1
- Date: Mon, 8 Jul 2024 14:57:02 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-09 15:20:49.216701
- Title: Surprising gender biases in GPT
- Title(参考訳): GPTにおける性別バイアスの予想
- Authors: Raluca Alexandra Fulgu, Valerio Capraro,
- Abstract要約: GPTにおける性別バイアスを探索する7つの実験を行った。
結果は強い非対称性を示し、ステレオタイプ的な男性文は、その逆よりも女性に帰属することが多い。
高い道徳的ジレンマでは、GPT-4は、女性を虐待するよりも、核の黙示録を防ぐために男性を虐待する方が適切である。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We present seven experiments exploring gender biases in GPT. Initially, GPT was asked to generate demographics of a potential writer of twenty phrases containing feminine stereotypes and twenty with masculine stereotypes. Results show a strong asymmetry, with stereotypically masculine sentences attributed to a female more often than vice versa. For example, the sentence "I love playing fotbal! Im practicing with my cosin Michael" was constantly assigned by ChatGPT to a female writer. This phenomenon likely reflects that while initiatives to integrate women in traditionally masculine roles have gained momentum, the reverse movement remains relatively underdeveloped. Subsequent experiments investigate the same issue in high-stakes moral dilemmas. GPT-4 finds it more appropriate to abuse a man to prevent a nuclear apocalypse than to abuse a woman. This bias extends to other forms of violence central to the gender parity debate (abuse), but not to those less central (torture). Moreover, this bias increases in cases of mixed-sex violence for the greater good: GPT-4 agrees with a woman using violence against a man to prevent a nuclear apocalypse but disagrees with a man using violence against a woman for the same purpose. Finally, these biases are implicit, as they do not emerge when GPT-4 is directly asked to rank moral violations. These results highlight the necessity of carefully managing inclusivity efforts to prevent unintended discrimination.
- Abstract(参考訳): GPTにおける性別バイアスを探索する7つの実験を行った。
当初、GPTは女性ステレオタイプを含む20のフレーズと男性ステレオタイプを含む20のフレーズの潜在的な作者の人口統計学を作成するよう求められた。
結果は強い非対称性を示し、ステレオタイプ的に男性的な文は、その逆よりも女性に帰属することが多い。
例えば、"I love playing fotbal! Im practice with my cosin Michael"という文は、常にChatGPTによって女性作家に割り当てられていた。
この現象は、伝統的な男性の役割における女性統合の取り組みが勢いを増しているが、逆の動きは比較的未発達であることを反映していると考えられる。
その後の実験は、高次の道徳的ジレンマにおいて同じ問題を調査した。
GPT-4は、女性を虐待するよりも、核の黙示録を防ぐために男性を虐待する方が適切である。
この偏見は、ジェンダー・パリティ論争(英語版)(英語版)(英語版)の中心となる暴力の他の形態(英語版)にも及んでいるが、中心的でないもの(英語版)には及ばない。
さらに、このバイアスは、より大きな利益のために混合性暴力の場合に増加する: GPT-4は、男性に対する暴力を使用して核の黙示録を防ぐことに同意するが、同じ目的のために女性に対する暴力を使用している男性と反対する。
最後に、これらのバイアスは、GPT-4が直接道徳的違反をランク付けするよう求められたときに現れることはないため、暗黙的である。
これらの結果は,意図しない差別を防止するために,インクリメンタルな取り組みを慎重に管理する必要性を浮き彫りにした。
関連論文リスト
- Revealing and Reducing Gender Biases in Vision and Language Assistants (VLAs) [82.57490175399693]
画像・テキスト・ビジョン言語アシスタント(VLA)22種における性別バイアスの検討
以上の結果から,VLAは実世界の作業不均衡など,データ中の人間のバイアスを再現する可能性が示唆された。
これらのモデルにおける性別バイアスを排除するため、微調整に基づくデバイアス法は、下流タスクにおけるデバイアスとパフォーマンスの最良のトレードオフを実現する。
論文 参考訳(メタデータ) (2024-10-25T05:59:44Z) - Beyond Binary Gender: Evaluating Gender-Inclusive Machine Translation with Ambiguous Attitude Words [85.48043537327258]
既存の機械翻訳の性別バイアス評価は主に男性と女性の性別に焦点を当てている。
本研究では,AmbGIMT (Gender-Inclusive Machine Translation with Ambiguous attitude words) のベンチマークを示す。
本研究では,感情的態度スコア(EAS)に基づく性別バイアス評価手法を提案する。
論文 参考訳(メタデータ) (2024-07-23T08:13:51Z) - The Male CEO and the Female Assistant: Evaluation and Mitigation of Gender Biases in Text-To-Image Generation of Dual Subjects [58.27353205269664]
本稿では,Paired Stereotype Test (PST) フレームワークを提案する。
PSTクエリT2Iモデルは、男性ステレオタイプと女性ステレオタイプに割り当てられた2つの個人を描写する。
PSTを用いて、ジェンダーバイアスの2つの側面、つまり、ジェンダーの職業におけるよく知られたバイアスと、組織力におけるバイアスという新しい側面を評価する。
論文 参考訳(メタデータ) (2024-02-16T21:32:27Z) - ''Fifty Shades of Bias'': Normative Ratings of Gender Bias in GPT
Generated English Text [11.085070600065801]
言語は、社会的信念システムの顕在化のための強力なツールとして機能する。
ジェンダーバイアスは、私たちの社会でもっとも普及しているバイアスの1つです。
我々は、GPT生成した英語テキストの最初のデータセットを作成し、男女バイアスの規範的評価を行う。
論文 参考訳(メタデータ) (2023-10-26T14:34:06Z) - Will the Prince Get True Love's Kiss? On the Model Sensitivity to Gender
Perturbation over Fairytale Texts [87.62403265382734]
近年の研究では、伝統的な妖精は有害な性バイアスを伴っていることが示されている。
本研究は,ジェンダーの摂動に対する頑健さを評価することによって,言語モデルの学習バイアスを評価することを目的とする。
論文 参考訳(メタデータ) (2023-10-16T22:25:09Z) - A Moral- and Event- Centric Inspection of Gender Bias in Fairy Tales at
A Large Scale [50.92540580640479]
7つの文化から得られた624個の妖精物語を含む妖精物語データセットにおいて,ジェンダーバイアスを計算的に解析した。
その結果,男性キャラクターの数は女性キャラクターの2倍であり,男女表現が不均等であることが判明した。
女性キャラクターは、注意、忠誠、尊厳に関する道徳的な言葉とより関連しているのに対し、男性キャラクターは、公正、権威に関する道徳的な単語とより関連している。
論文 参考訳(メタデータ) (2022-11-25T19:38:09Z) - Towards Understanding Gender-Seniority Compound Bias in Natural Language
Generation [64.65911758042914]
本研究では,事前学習したニューラルジェネレーションモデルにおける性別バイアスの程度に,高齢者がどのような影響を及ぼすかを検討する。
以上の結果から, GPT-2は, 両領域において, 女性を中年, 男性を中年として考えることにより, 偏見を増幅することが示された。
以上の結果から, GPT-2を用いて構築したNLPアプリケーションは, プロの能力において女性に害を与える可能性が示唆された。
論文 参考訳(メタデータ) (2022-05-19T20:05:02Z) - Quantifying Gender Biases Towards Politicians on Reddit [19.396806939258806]
政治における男女平等を高める試みにもかかわらず、グローバルな努力は平等な女性代表の確保に苦慮している。
これは、権威のある女性に対する暗黙の性偏見と結びついている可能性が高い。
本稿では、オンライン政治討論に現れるジェンダーバイアスの包括的研究について述べる。
論文 参考訳(メタデータ) (2021-12-22T16:39:14Z) - Identifying and Mitigating Gender Bias in Hyperbolic Word Embeddings [34.378806636170616]
ジェンダーバイアスの研究を、最近普及したハイパーボリック単語の埋め込みに拡張する。
本稿では,双曲型単語表現におけるジェンダーバイアスを定量化するための新しい尺度であるジロコシンバイアスを提案する。
評価試験の結果、Poincar'e Gender Debias (PGD) は最小のセマンティックオフセットを追加しながらバイアスを効果的に低減することが示された。
論文 参考訳(メタデータ) (2021-09-28T14:43:37Z) - Uncovering Implicit Gender Bias in Narratives through Commonsense
Inference [21.18458377708873]
モデル生成物語における主人公に関連する性別バイアスについて検討する。
暗黙のバイアスに注目し、コモンセンス推論エンジンを使ってそれらを明らかにする。
論文 参考訳(メタデータ) (2021-09-14T04:57:45Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。