論文の概要: PAS: Data-Efficient Plug-and-Play Prompt Augmentation System
- arxiv url: http://arxiv.org/abs/2407.06027v3
- Date: Fri, 12 Jul 2024 10:04:50 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-16 03:58:18.400654
- Title: PAS: Data-Efficient Plug-and-Play Prompt Augmentation System
- Title(参考訳): PAS:データ効率の良いPlug-and-Play Prompt Augmentation System
- Authors: Miao Zheng, Hao Liang, Fan Yang, Haoze Sun, Tianpeng Li, Lingchu Xiong, Yan Zhang, Youzhen Wu, Kun Li, Yanjun Shen, Mingan Lin, Tao Zhang, Guosheng Dong, Yujing Qiao, Kun Fang, Weipeng Chen, Bin Cui, Wentao Zhang, Zenan Zhou,
- Abstract要約: 大型言語モデル(LLM)は、プラグアンドプレイAIシステムへの需要を増大させた。
LLMベースのプラグアンドプレイ自動プロンプトエンジニアリング(APE)システムであるPASを提案する。
PAS は従来の APE モデルと比較して、平均 6.09 ポイントの改善を達成している。
PASは人間の評価に優れており、ユーザのためのプラグインとしての適合性を強調している。
- 参考スコア(独自算出の注目度): 32.70608802492641
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In recent years, the rise of Large Language Models (LLMs) has spurred a growing demand for plug-and-play AI systems. Among the various AI techniques, prompt engineering stands out as particularly significant. However, users often face challenges in writing prompts due to the steep learning curve and significant time investment, and existing automatic prompt engineering (APE) models can be difficult to use. To address this issue, we propose PAS, an LLM-based plug-and-play APE system. PAS utilizes LLMs trained on high-quality, automatically generated prompt complementary datasets, resulting in exceptional performance. In comprehensive benchmarks, PAS achieves state-of-the-art (SoTA) results compared to previous APE models, with an average improvement of 6.09 points. Moreover, PAS is highly efficient, achieving SoTA performance with only 9000 data points. Additionally, PAS can autonomously generate prompt augmentation data without requiring additional human labor. Its flexibility also allows it to be compatible with all existing LLMs and applicable to a wide range of tasks. PAS excels in human evaluations, underscoring its suitability as a plug-in for users. This combination of high performance, efficiency, and flexibility makes PAS a valuable system for enhancing the usability and effectiveness of LLMs through improved prompt engineering.
- Abstract(参考訳): 近年、Large Language Models(LLMs)の台頭により、プラグアンドプレイAIシステムへの需要が高まっている。
様々なAI技術の中で、プロンプトエンジニアリングは特に重要である。
しかし、学習曲線の急激さや時間投資の大幅な増加により、ユーザーはプロンプトを書くことの難しさに直面することが多く、既存の自動プロンプトエンジニアリング(APE)モデルを使用することは困難である。
この問題に対処するために, LLM ベースのプラグアンドプレイ APE システム PAS を提案する。
PASは高品質で自動生成される補完的なデータセットに基づいてトレーニングされたLLMを使用し、例外的なパフォーマンスを実現している。
総合的なベンチマークでは、PASは従来のAPEモデルと比較して、平均6.09ポイントの改善を達成している。
さらに、PASは非常に効率的で、9000のデータポイントしか持たないSoTAの性能を実現している。
さらに、PASは人的労働を必要とせずに、即時増強データを自律的に生成することができる。
この柔軟性により、既存のすべてのLLMと互換性があり、幅広いタスクに適用できる。
PASは人間の評価に優れており、ユーザのためのプラグインとしての適合性を強調している。
高い性能、効率、柔軟性の組み合わせにより、PASはプロンプトエンジニアリングの改善を通じてLCMのユーザビリティと有効性を向上する貴重なシステムとなっている。
関連論文リスト
- SELF-GUIDE: Better Task-Specific Instruction Following via Self-Synthetic Finetuning [70.21358720599821]
大規模言語モデル(LLM)は、適切な自然言語プロンプトを提供する際に、多様なタスクを解決するという約束を持っている。
学生LLMからタスク固有の入出力ペアを合成する多段階メカニズムであるSELF-GUIDEを提案する。
ベンチマークの指標から,分類タスクに約15%,生成タスクに18%の絶対的な改善を報告した。
論文 参考訳(メタデータ) (2024-07-16T04:41:58Z) - APEER: Automatic Prompt Engineering Enhances Large Language Model Reranking [39.649879274238856]
APEERという新しい自動プロンプトエンジニアリングアルゴリズムを導入する。
APEERはフィードバックと好みの最適化を通じて改良されたプロンプトを反復的に生成する。
実験では、既存の最先端(SoTA)マニュアルプロンプトよりもAPEERの性能が大幅に向上したことを示す。
論文 参考訳(メタデータ) (2024-06-20T16:11:45Z) - On the Worst Prompt Performance of Large Language Models [93.13542053835542]
大規模言語モデル(LLM)の性能は,プロンプトの表現に非常に敏感である。
セマンティックに等価なケースレベルのクエリで構成される新しいベンチマークであるRobustAlpacaEvalを紹介する。
RobustAlpacaEvalとChatGPT、およびLlama、Mistral、Gemmaファミリーの6つのオープンソースLLMによる実験により、モデル性能のかなりのばらつきが明らかになった。
論文 参考訳(メタデータ) (2024-06-08T13:40:38Z) - Large Language Models Can Automatically Engineer Features for Few-Shot Tabular Learning [35.03338699349037]
本稿では,機能エンジニアとして大規模言語モデルを用いる新しい文脈内学習フレームワークFeatLLMを提案する。
FeatLLMは高品質なルールを生成し、TabLLMやSTUNTなどよりも大幅に(平均で10%)優れている。
論文 参考訳(メタデータ) (2024-04-15T06:26:08Z) - Intent-based Prompt Calibration: Enhancing prompt optimization with
synthetic boundary cases [2.6159111710501506]
本稿では,ユーザ意図に対するプロンプトを反復的に洗練するキャリブレーションプロセスを用いて,自動プロンプトエンジニアリングの新しい手法を提案する。
我々は,モデレーションや生成といった現実的なタスクにおいて,強力なプロプライエタリなモデルに対して,本手法の有効性を示す。
論文 参考訳(メタデータ) (2024-02-05T15:28:43Z) - Making Large Language Models Better Data Creators [22.0882632635255]
大規模言語モデル(LLM)はNLPの最先端を著しく進歩させた。
ダウンストリームアプリケーションへのデプロイは、コスト、応答性、コントロール、プライバシとセキュリティに関する懸念のため、依然として難しい。
単一フォーマットの例のみを必要とする統一データ生成パイプラインを提案する。
論文 参考訳(メタデータ) (2023-10-31T01:08:34Z) - OverPrompt: Enhancing ChatGPT through Efficient In-Context Learning [49.38867353135258]
複数のタスク入力を処理するために,LLMのコンテキスト内学習機能を活用したOverPromptを提案する。
本実験により,OverPromptはタスク性能を著しく損なうことなく,コスト効率の良いゼロショット分類を実現することができることがわかった。
論文 参考訳(メタデータ) (2023-05-24T10:08:04Z) - Large Language Models are Not Yet Human-Level Evaluators for Abstractive
Summarization [66.08074487429477]
抽象的な要約のための自動評価器として,大規模言語モデル(LLM)の安定性と信頼性について検討する。
また、ChatGPTとGPT-4は、一般的に使われている自動測定値よりも優れていますが、人間の代替品として準備ができていません。
論文 参考訳(メタデータ) (2023-05-22T14:58:13Z) - AutoML-GPT: Automatic Machine Learning with GPT [74.30699827690596]
本稿では,タスク指向のプロンプトを開発し,大規模言語モデル(LLM)を自動的に活用して学習パイプラインを自動化することを提案する。
本稿では,多様なAIモデルのブリッジとしてGPTを用いたAutoML-GPTを提案する。
このアプローチはコンピュータビジョン、自然言語処理、その他の課題領域において顕著な結果をもたらす。
論文 参考訳(メタデータ) (2023-05-04T02:09:43Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。