Test-Time Adaptation in Point Clouds: Leveraging Sampling Variation with Weight Averaging
- URL: http://arxiv.org/abs/2411.01116v1
- Date: Sat, 02 Nov 2024 02:59:25 GMT
- Title: Test-Time Adaptation in Point Clouds: Leveraging Sampling Variation with Weight Averaging
- Authors: Ali Bahri, Moslem Yazdanpanah, Mehrdad Noori, Sahar Dastani Oghani, Milad Cheraghalikhani, David Osowiech, Farzad Beizaee, Gustavo adolfo. vargas-hakim, Ismail Ben Ayed, Christian Desrosiers,
- Abstract summary: Test-Time Adaptation (TTA) addresses distribution shifts during testing by adapting a pretrained model without access to source data.
We propose a novel TTA approach for 3D point cloud classification, combining sampling variation with weight averaging.
- Score: 17.74824534094739
- License:
- Abstract: Test-Time Adaptation (TTA) addresses distribution shifts during testing by adapting a pretrained model without access to source data. In this work, we propose a novel TTA approach for 3D point cloud classification, combining sampling variation with weight averaging. Our method leverages Farthest Point Sampling (FPS) and K-Nearest Neighbors (KNN) to create multiple point cloud representations, adapting the model for each variation using the TENT algorithm. The final model parameters are obtained by averaging the adapted weights, leading to improved robustness against distribution shifts. Extensive experiments on ModelNet40-C, ShapeNet-C, and ScanObjectNN-C datasets, with different backbones (Point-MAE, PointNet, DGCNN), demonstrate that our approach consistently outperforms existing methods while maintaining minimal resource overhead. The proposed method effectively enhances model generalization and stability in challenging real-world conditions.
Related papers
- Test-time adaptation for geospatial point cloud semantic segmentation with distinct domain shifts [6.80671668491958]
Test-time adaptation (TTA) allows direct adaptation of a pre-trained model to unlabeled data during inference stage without access to source data or additional training.
We propose three domain shift paradigms: photogrammetric to airborne LiDAR, airborne to mobile LiDAR, and synthetic to mobile laser scanning.
Experimental results show our method improves classification accuracy by up to 20% mIoU, outperforming other methods.
arXiv Detail & Related papers (2024-07-08T15:40:28Z) - Test-Time Model Adaptation with Only Forward Passes [68.11784295706995]
Test-time adaptation has proven effective in adapting a given trained model to unseen test samples with potential distribution shifts.
We propose a test-time Forward-Optimization Adaptation (FOA) method.
FOA runs on quantized 8-bit ViT, outperforms gradient-based TENT on full-precision 32-bit ViT, and achieves an up to 24-fold memory reduction on ImageNet-C.
arXiv Detail & Related papers (2024-04-02T05:34:33Z) - AR-TTA: A Simple Method for Real-World Continual Test-Time Adaptation [1.4530711901349282]
We propose to validate test-time adaptation methods using datasets for autonomous driving, namely CLAD-C and SHIFT.
We observe that current test-time adaptation methods struggle to effectively handle varying degrees of domain shift.
We enhance the well-established self-training framework by incorporating a small memory buffer to increase model stability.
arXiv Detail & Related papers (2023-09-18T19:34:23Z) - Test-Time Adaptation for Point Cloud Upsampling Using Meta-Learning [17.980649681325406]
We propose a test-time adaption approach to enhance model generality of point cloud upsampling.
The proposed approach leverages meta-learning to explicitly learn network parameters for test-time adaption.
Our framework is generic and can be applied in a plug-and-play manner with existing backbone networks in point cloud upsampling.
arXiv Detail & Related papers (2023-08-31T06:44:59Z) - Uncertainty Guided Adaptive Warping for Robust and Efficient Stereo
Matching [77.133400999703]
Correlation based stereo matching has achieved outstanding performance.
Current methods with a fixed model do not work uniformly well across various datasets.
This paper proposes a new perspective to dynamically calculate correlation for robust stereo matching.
arXiv Detail & Related papers (2023-07-26T09:47:37Z) - Faster Adaptive Federated Learning [84.38913517122619]
Federated learning has attracted increasing attention with the emergence of distributed data.
In this paper, we propose an efficient adaptive algorithm (i.e., FAFED) based on momentum-based variance reduced technique in cross-silo FL.
arXiv Detail & Related papers (2022-12-02T05:07:50Z) - PCB-RandNet: Rethinking Random Sampling for LIDAR Semantic Segmentation
in Autonomous Driving Scene [15.516687293651795]
We propose a new Polar Cylinder Balanced Random Sampling method for semantic segmentation of large-scale LiDAR point clouds.
In addition, a sampling consistency loss is introduced to further improve the segmentation performance and reduce the model's variance under different sampling methods.
Our approach produces excellent performance on both SemanticKITTI and SemanticPOSS benchmarks, achieving a 2.8% and 4.0% improvement, respectively.
arXiv Detail & Related papers (2022-09-28T02:59:36Z) - PointInst3D: Segmenting 3D Instances by Points [136.7261709896713]
We propose a fully-convolutional 3D point cloud instance segmentation method that works in a per-point prediction fashion.
We find the key to its success is assigning a suitable target to each sampled point.
Our approach achieves promising results on both ScanNet and S3DIS benchmarks.
arXiv Detail & Related papers (2022-04-25T02:41:46Z) - Efficient Test-Time Model Adaptation without Forgetting [60.36499845014649]
Test-time adaptation seeks to tackle potential distribution shifts between training and testing data.
We propose an active sample selection criterion to identify reliable and non-redundant samples.
We also introduce a Fisher regularizer to constrain important model parameters from drastic changes.
arXiv Detail & Related papers (2022-04-06T06:39:40Z) - Deep Magnification-Flexible Upsampling over 3D Point Clouds [103.09504572409449]
We propose a novel end-to-end learning-based framework to generate dense point clouds.
We first formulate the problem explicitly, which boils down to determining the weights and high-order approximation errors.
Then, we design a lightweight neural network to adaptively learn unified and sorted weights as well as the high-order refinements.
arXiv Detail & Related papers (2020-11-25T14:00:18Z) - Point Transformer for Shape Classification and Retrieval of 3D and ALS
Roof PointClouds [3.3744638598036123]
This paper proposes a fully attentional model - em Point Transformer, for deriving a rich point cloud representation.
The model's shape classification and retrieval performance are evaluated on a large-scale urban dataset - RoofN3D and a standard benchmark dataset ModelNet40.
The proposed method outperforms other state-of-the-art models in the RoofN3D dataset, gives competitive results in the ModelNet40 benchmark, and showcases high robustness to various unseen point corruptions.
arXiv Detail & Related papers (2020-11-08T08:11:02Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.