論文の概要: Merge, Ensemble, and Cooperate! A Survey on Collaborative Strategies in the Era of Large Language Models
- arxiv url: http://arxiv.org/abs/2407.06089v1
- Date: Mon, 8 Jul 2024 16:29:08 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-09 14:51:28.493264
- Title: Merge, Ensemble, and Cooperate! A Survey on Collaborative Strategies in the Era of Large Language Models
- Title(参考訳): マージ, アンサンブル, 協力! 大規模言語モデル時代の協調戦略に関する調査
- Authors: Jinliang Lu, Ziliang Pang, Min Xiao, Yaochen Zhu, Rui Xia, Jiajun Zhang,
- Abstract要約: 多様な機能にもかかわらず、Large Language Models (LLM) は様々な長所と短所を示す。
これらの課題に対処するため、最近の研究はLLMの協調戦略を探求している。
本稿では,この新たな研究領域の概要を概観し,そのようなコラボレーションの背景にあるモチベーションを明らかにする。
- 参考スコア(独自算出の注目度): 32.336273322481276
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The remarkable success of Large Language Models (LLMs) has ushered natural language processing (NLP) research into a new era. Despite their diverse capabilities, LLMs trained on different corpora exhibit varying strengths and weaknesses, leading to challenges in maximizing their overall efficiency and versatility. To address these challenges, recent studies have explored collaborative strategies for LLMs. This paper provides a comprehensive overview of this emerging research area, highlighting the motivation behind such collaborations. Specifically, we categorize collaborative strategies into three primary approaches: Merging, Ensemble, and Cooperation. Merging involves integrating multiple LLMs in the parameter space. Ensemble combines the outputs of various LLMs. Cooperation} leverages different LLMs to allow full play to their diverse capabilities for specific tasks. We provide in-depth introductions to these methods from different perspectives and discuss their potential applications. Additionally, we outline future research directions, hoping this work will catalyze further studies on LLM collaborations and paving the way for advanced NLP applications.
- Abstract(参考訳): LLM(Large Language Models)の顕著な成功は、自然言語処理(NLP)研究を新しい時代へと導いてきた。
多様な能力にもかかわらず、異なるコーパスで訓練されたLLMは、様々な強さと弱点を示し、全体的な効率性と汎用性を最大化する上での課題につながった。
これらの課題に対処するため、最近の研究はLLMの協調戦略を探求している。
本稿では,この新たな研究領域の概要を概観し,そのようなコラボレーションの背景にあるモチベーションを明らかにする。
具体的には、協調戦略を、マージ、アンサンブル、協力の3つの主要なアプローチに分類する。
マージにはパラメータ空間に複数のLSMを統合することが含まれる。
アンサンブルは様々なLSMの出力を組み合わせる。
Cooperation} は異なる LLM を活用して、特定のタスクに対する様々な能力のフルプレイを可能にする。
我々は、異なる視点からこれらの手法を詳細に紹介し、その潜在的な応用について論じる。
さらに,本研究がLLMコラボレーションのさらなる研究を触媒し,先進的なNLPアプリケーションへの道を開くことを願って,今後の研究の方向性を概説する。
関連論文リスト
- Towards a Unified View of Preference Learning for Large Language Models: A Survey [88.66719962576005]
大きな言語モデル(LLM)は、非常に強力な能力を示す。
成功するための重要な要因の1つは、LLMの出力を人間の好みに合わせることである。
選好学習のすべての戦略を、モデル、データ、フィードバック、アルゴリズムの4つの構成要素に分解する。
論文 参考訳(メタデータ) (2024-09-04T15:11:55Z) - Can LLMs Solve longer Math Word Problems Better? [47.227621867242]
大規模言語モデル(LLM)の能力評価にはMWP(Math Word Problems)が不可欠である
この研究は、文脈長一般化可能性(CoLeG)の探索の先駆者である。
これらの問題を解決する上で, LLMの有効性とレジリエンスを評価するために, 2つの新しい指標が提案されている。
論文 参考訳(メタデータ) (2024-05-23T17:13:50Z) - Evolutionary Computation in the Era of Large Language Model: Survey and Roadmap [26.959633651475016]
大規模言語モデル(LLM)と進化的アルゴリズム(EA)の相互作用は、複雑な問題における適用可能性の共通の追求を共有している。
LLMに固有の豊富なドメイン知識により、EAはよりインテリジェントな検索を行うことができる。
本稿では、相互インスピレーションを2つの主要な道に分類する、徹底的なレビューと前方のロードマップを提供する。
論文 参考訳(メタデータ) (2024-01-18T14:58:17Z) - Towards Vision Enhancing LLMs: Empowering Multimodal Knowledge Storage
and Sharing in LLMs [72.49064988035126]
マルチモーダル大規模言語モデル(MLLM)の強化を目的としたMKS2という手法を提案する。
具体的には、LLMの内部ブロックに組み込まれたコンポーネントであるModular Visual Memoryを導入し、オープンワールドの視覚情報を効率的に保存するように設計されている。
実験により,MKS2は物理的・常識的な知識を必要とする文脈において,LLMの推論能力を大幅に増強することが示された。
論文 参考訳(メタデータ) (2023-11-27T12:29:20Z) - Exploring Collaboration Mechanisms for LLM Agents: A Social Psychology View [60.80731090755224]
本稿では,理論的洞察を用いた実用実験により,現代NLPシステム間の協調機構を解明する。
我々は, LLMエージェントからなる4つの独特な社会をつくり, それぞれのエージェントは, 特定の特性(容易性, 過信性)によって特徴づけられ, 異なる思考パターン(議論, ふりかえり)と協調する。
以上の結果から, LLMエージェントは, 社会心理学理論を反映した, 適合性やコンセンサスリーディングといった人間的な社会的行動を示すことが明らかとなった。
論文 参考訳(メタデータ) (2023-10-03T15:05:52Z) - Corex: Pushing the Boundaries of Complex Reasoning through Multi-Model Collaboration [83.4031923134958]
Corexは,大規模言語モデルを自律エージェントに変換する,新たな汎用戦略スイートだ。
人間の振る舞いにインスパイアされたCorexは、Debate、Review、Retrieveモードといった多様なコラボレーションパラダイムによって構成されている。
我々は,複数のLDMを協調的に演奏することで,既存の手法に比べて性能が著しく向上することが実証された。
論文 参考訳(メタデータ) (2023-09-30T07:11:39Z) - A Comprehensive Overview of Large Language Models [68.22178313875618]
大規模言語モデル(LLM)は、最近自然言語処理タスクにおいて顕著な機能を示した。
本稿では, LLM関連概念の幅広い範囲について, 既存の文献について概説する。
論文 参考訳(メタデータ) (2023-07-12T20:01:52Z) - A Survey on Multimodal Large Language Models [71.63375558033364]
GPT-4Vで表されるマルチモーダル大言語モデル(MLLM)は、新たな研究ホットスポットとなっている。
本稿では,MLLMの最近の進歩を追跡・要約することを目的とする。
論文 参考訳(メタデータ) (2023-06-23T15:21:52Z) - Examining Inter-Consistency of Large Language Models Collaboration: An
In-depth Analysis via Debate [41.949869545423375]
大きな言語モデル(LLM)は、様々なアプリケーションで印象的な機能を示しているが、それでも様々な矛盾問題に直面している。
LLMが効果的に協力して共有目標のコンセンサスを達成するためには,コモンセンス推論に焦点をあてる。
我々の研究は,LLM間の一貫性の理解に寄与し,今後のコラボレーション手法開発の基礎を築いた。
論文 参考訳(メタデータ) (2023-05-19T11:15:33Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。